PacktPublishing / Microservices-with-Spring-Boot-and-Spring-Cloud-Third-Edition

Microservices with Spring Boot and Spring Cloud, Third Edition
MIT License
209 stars 166 forks source link

Microservices with Spring Boot 3 and Spring Cloud, Third Edition

This is the code repository for Microservices with Spring Boot 3 and Spring Cloud, Third Edition, published by Packt.

Build resilient and scalable microservices using Spring Cloud, Istio, and Kubernetes

The author of this book is -Magnus Larsson

About the book

Looking to build and deploy microservices but not sure where to start? Check out Microservices with Spring Boot 3 and Spring Cloud, Third Edition. With a practical approach, you'll begin with simple microservices and progress to complex distributed applications. Learn essential functionality and deploy microservices using Kubernetes and Istio. This book covers Java 17, Spring Boot 3, and Spring Cloud 2022. Java EE packages are replaced with the latest Jakarta EE packages. Code examples are updated and deprecated APIs have been replaced, providing the most up to date information. Gain knowledge of Spring's AOT module, observability, distributed tracing, and Helm 3 for Kubernetes packaging. Start with Docker Compose to run microservices with databases and messaging services. Progress to deploying microservices on Kubernetes with Istio. Explore persistence, resilience, reactive microservices, and API documentation with OpenAPI. Learn service discovery with Netflix Eureka, edge servers with Spring Cloud Gateway, and monitoring with Prometheus, Grafana, and the EFK stack. By the end, you'll build scalable microservices using Spring Boot and Spring Cloud.

Key Takeaways

Try out new versions

If you want to try out the source code of this book with newer versions of Spring, Java, Kubernetes, and Istio than used in the book, you can take a look at the following blog posts:

  1. Upgrade to Spring Boot 3.1 (published 10 October 2023)
  2. Upgrade to Spring Boot 3.2 and Java 21 (published 3 June 2024)
  3. Faster startup with Spring Boot 3.2 and CRaC, part 1 - Automatic checkpoint (published 1 July 2024)

Errata

Outline and Chapter Summary

This book is about building production-ready microservices using Spring Boot 3 and Spring Cloud. This book primarily covers Spring Boot, Spring Cloud, Docker, Kubernetes, Istio, the EFK stack, Prometheus, and Grafana. Each of these open source tools works great by itself, but it can be challenging to understand how to use them together in an advantageous way. In some areas, they complement each other, but in other areas they overlap, and it is not obvious which one to choose for a particular situation. This is a hands-on book that describes step by step how to use these open source tools together. This is the book I was looking for ten years ago when I started to learn about microservices, but with updated versions of the open source tools it covers.

  1. Introduction to Microservices
  2. Introduction to Spring Boot
  3. Creating a Set of Cooperating Microservices
  4. Deploying Our Microservices Using Docker
  5. Adding an API Description Using OpenAPI
  6. Adding Persistence
  7. Developing Reactive Microservices
  8. Introduction to Spring Cloud
  9. Adding Service Discovery Using Netflix Eureka
  10. Using Spring Cloud Gateway to Hide Microservices behind an Edge Server
  11. Securing Access to APIs
  12. Centralized Configuration
  13. Improving Resilience Using Resilience4j
  14. Understanding Distributed Tracing
  15. Introduction to Kubernetes
  16. Deploying Our Microservices to Kubernetes
  17. Implementing Kubernetes Features to Simplify the System Landscape
  18. Using a Service Mesh to Improve Observability and Management
  19. Centralized Logging with the EFK Stack
  20. Monitoring Microservices
  21. Installation Instructions for macOS
  22. Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu
  23. Native Compiled Java Microservices

Chapter 01, Introduction to Microservices

The introductory chapter of the book delves into the realm of microservices, presenting a comprehensive overview of the fundamental concepts and design patterns inherent to this architectural approach. Rather than uncritically extolling the virtues of microservices, the chapter strives to elucidate how one can harness their advantages while effectively navigating the intricacies of constructing microservices that are scalable, resilient, and easily manageable. The opening section outlines key subjects encompassed within the chapter, including the author's personal journey into microservices, an elucidation of microservice-based architecture, identification of the challenges entailed therein, strategies for countering these challenges through purposeful design patterns, and exploration of software tools that facilitate adept management of these hurdles. Additionally, the chapter briefly alludes to pertinent factors of consideration that lie outside the book's purview. In summary, this inaugural chapter of the book serves as a primer on microservices, elucidating both their potential benefits and the pragmatic techniques to confront the complexities intrinsic to their implementation. It offers readers a structured introduction to the realm of microservices, encompassing insights into architecture, challenges, design patterns, and tools, while maintaining a balanced perspective on their utility and challenges.

Key Insights:.

Chapter 02, Introduction to Spring Boot

The "Introduction to Spring Boot" chapter offers readers an initial immersion into Spring Boot 3 and the constellation of open-source tools integral to the book's initial segment. The chapter delineates the ensemble of technologies that will be utilized, including Spring WebFlux for building RESTful APIs, springdoc-openapi for generating OpenAPI-based documentation, Spring Data for database interaction (SQL and NoSQL), Spring Cloud Stream for message-based microservices, and Docker for containerized deployment of microservices. The subsequent focal point involves crafting a series of cooperative microservices using Spring Boot, with an emphasis on delivering tangible business value. While acknowledging the challenges tied to microservices, the chapter primarily focuses on functionality development, saving deeper challenge exploration for forthcoming sections. The narrative pivots towards the creation of microservices housing business logic founded on Spring Beans, which are exposed through REST APIs facilitated by Spring WebFlux. The OpenAPI Specification underpins API documentation via springdoc-openapi, while data persistence is achieved using Spring Data with compatibility across SQL and NoSQL databases. To accommodate reactive microservices and asynchronous message-based services, Spring Cloud Stream comes into play. The chapter culminates with the integration of Docker, enabling the orchestration of microservices, including databases and message brokers, through a unified command. In essence, the chapter functions as an orientation to Spring Boot 3 and the associated technologies that underpin the book's opening section. It introduces the pivotal tools that will be harnessed for building microservices, highlighting their individual roles within the development landscape. The narrative sets the stage for constructing functional microservices with an outlook on business value, while also alluding to forthcoming chapters that will delve deeper into the multifaceted challenges of microservices.

Key Insights:

Chapter 03, Creating a Set of Cooperating Microservices

The "Creating a Set of Cooperating Microservices" chapter is a practical guide to crafting a collaborative set of microservices from scratch. Employing Spring Initializr, the chapter navigates readers through the creation of initial project structures rooted in Spring Framework 6.0 and Spring Boot 3.0. The focus revolves around establishing three foundational core services, each responsible for managing distinct resources, alongside a composite service orchestrating these core elements to produce a unified composite outcome. As the chapter progresses, readers are introduced to the basics of implementing RESTful APIs through Spring WebFlux. While these microservices begin with minimalistic functionality, subsequent chapters promise progressive augmentation of their capabilities. This chapter is an experiential journey into constructing and coordinating microservices. Through hands-on implementation, readers gain insights into the orchestration of these microservices, gradually expanding their functionalities. The pinnacle of this chapter is the creation of a composite microservice that leverages RESTful APIs of the core microservices to generate a comprehensive aggregated response. The chapter encompasses diverse topics including landscape introduction, project skeleton generation, RESTful API incorporation, composite microservice integration, error handling, manual API testing, isolated microservice automated testing, and semi-automated testing of the complete microservice landscape.

Key Insights:

Chapter 04, Deploying Our Microservices Using Docker

The "Deploying Our Microservices Using Docker" chapter offers readers an immersive guide to effectively deploying microservices using Docker. The focus is on integrating Dockerfiles and docker-compose files to facilitate a one-command startup of the entire microservices landscape. The chapter's scope extends to utilizing multiple Spring profiles for streamlined configuration management, both with and without Docker. Throughout the chapter, readers are introduced to Docker and its application in containerizing microservices. By its conclusion, the chapter equips readers with the capability to execute automated tests seamlessly within Docker containers, encompassing the entire microservices landscape. This approach proves invaluable for developers, enabling local testing, seamless integration into build servers, and system-level verification of code changes. The chapter primes readers for upcoming sections by hinting at the integration of databases and queue managers as Docker containers, fostering an enriched testing landscape. Covered topics encompass an introduction to Docker, the evolving compatibility of Docker and Java, deploying a single microservice using Docker, orchestrating microservice landscapes via Docker Compose, and the automation of tests for collaborating microservices.

Key Insights:

Chapter 05, Adding an API Description Using OpenAPI

The "Adding an API Description Using OpenAPI" chapter provides a comprehensive guide to effectively document microservice APIs using the OpenAPI Specification. Employing the springdoc-openapi tool, readers learn how to annotate services to dynamically generate OpenAPI-based API documentation. A pivotal highlight involves testing these APIs using Swagger UI, a web browser tool. The chapter underscores the significance of clear and accessible API documentation, which greatly impacts an API's usability. It delves into how the OpenAPI Specification, previously known as Swagger, is widely utilized for documenting RESTful services. The open-source project springdoc-openapi is introduced as a tool to create such documentation, accompanied by the integration of Swagger UI viewer. By the chapter's conclusion, readers will have comprehensive OpenAPI-based documentation for the external API of the product-composite-service microservice, further complemented by an integrated Swagger UI viewer for visualizing and testing the API. Covered topics encompass the introduction to springdoc-openapi usage, its integration into source code, the process of building and launching a microservice landscape, and practical exploration of the OpenAPI documentation.

Key Insights:

Chapter 06, Adding Persistence

The "Adding Persistence" chapter offers a comprehensive guide on incorporating data persistence into microservices. Through Spring Data integration, readers learn how to establish and access data in MongoDB for two core microservices, while the remaining microservice accesses data in a MySQL relational database. The utilization of Testcontainers to initiate databases during integration tests enhances the practicality of the process. The chapter dives into the art of data persistence within microservices, leveraging Spring Data for MongoDB and MySQL databases. Core microservices, namely product and recommendation, rely on Spring Data for MongoDB, while the review microservice employs Spring Data for the Java Persistence API (JPA) to interact with a MySQL database. This integration extends to updating RESTful APIs to facilitate data creation, deletion, and retrieval. The chapter extends to running databases as Docker containers, managed through Docker Compose—a parallel strategy to microservices deployment. Key topics covered encompass introducing persistence to core microservices, crafting automated tests that prioritize persistence, integrating persistence within the service layer, expanding the composite service API, integrating databases into Docker Compose, manual testing of new APIs and persistence, and refining automated tests for the entire microservices landscape.

Key Insights:

Chapter 07, Developing Reactive Microservices

The "Developing Reactive Microservices" chapter delves into the significance of a reactive approach in microservices development and provides comprehensive guidance on constructing end-to-end reactive services. The chapter equips readers with the knowledge to develop and test both non-blocking synchronous RESTful APIs and asynchronous event-driven services, accompanied by insights on employing reactive non-blocking drivers for MongoDB and traditional blocking code for MySQL. This chapter serves as a comprehensive guide to reactive microservices development. Readers learn to craft non-blocking synchronous REST APIs and asynchronous event-driven services, while also gaining a deeper understanding of when to choose between these two alternatives. The chapter underscores the foundation of reactive systems as message-driven and asynchronous, enabling scalability, resilience, and responsiveness. Core topics encompass the selection of development approaches, construction of non-blocking synchronous APIs and event-driven asynchronous services, as well as the execution of both manual and automated tests for a reactive microservices landscape.

Key Insights:

Chapter 08, Introduction to Spring Cloud

The "Introduction to Spring Cloud" chapter serves as a gateway to Spring Cloud and its integral components within the context of this book's microservices journey. Having explored various facets, from Spring Boot-based APIs to reactive microservices and automated testing, the chapter now ushers in Spring Cloud to render services production-ready. This includes making them scalable, robust, configurable, secure, and resilient. As the chapter unfolds, readers are introduced to the pivotal role of Spring Cloud in implementing key design patterns covered in earlier sections. These patterns, including service discovery, edge server setup, centralized configuration, circuit breaker implementation, and distributed tracing, are essential for shaping microservices into a cohesive, resilient ecosystem. Spring Cloud emerges as a transformative framework, aligning with the principles highlighted in the book's foundational chapters, and empowering readers to enhance their microservices with advanced capabilities that ensure readiness for production deployment.

Key Insights:

Chapter 09, Adding Service Discovery Using Netflix Eureka

The "Adding Service Discovery Using Netflix Eureka" chapter offers a comprehensive guide to incorporating service discovery capabilities into a microservices landscape using Netflix Eureka within Spring Cloud. This involves integrating a Netflix Eureka-based service discovery server, configuring microservices to utilize Spring Cloud LoadBalancer for efficient service discovery, and enabling automatic load balancing for new instances as they become available. The chapter delves into the integration of Netflix Eureka as a pivotal discovery service for Spring Boot-based microservices. It emphasizes the significance of such a service in facilitating seamless communication among microservices and the rationale behind opting for a discovery service over a DNS server. Readers are introduced to the practicalities of setting up a Netflix Eureka server, connecting microservices to it through the Spring Cloud module for Netflix Eureka clients, and configuring development-use scenarios. The chapter equips readers with the knowledge to effectively try out Netflix Eureka's discovery service capabilities. Key topics encompass an introduction to service discovery, the establishment of a Netflix Eureka server, microservices' connection to the server, configuration setup, and practical exploration of Netflix Eureka as a discovery service.

Key Insights:

Chapter 10, Using Spring Cloud Gateway to Hide Microservices behind an Edge Server

The "Using Spring Cloud Gateway to Hide Microservices behind an Edge Server" chapter provides a comprehensive guide on leveraging Spring Cloud Gateway to establish an edge server, concealing microservices from external consumers and selectively exposing specific APIs. By integrating a Spring Cloud Gateway-based edge server into the system landscape, readers gain insights into how this configuration enhances security, streamlines access to public APIs, and simplifies the internal complexity of microservices. This chapter delves into the practical implementation of Spring Cloud Gateway as an edge server within a microservices ecosystem. It elucidates the process of strategically exposing public APIs through the edge server while keeping private APIs accessible only within the microservice landscape. In this context, the product composite service and Netflix Eureka's discovery server become externally accessible via the edge server, while the core services—product, recommendation, and review—are hidden from external access. Readers receive step-by-step guidance on incorporating the edge server, configuring Spring Cloud Gateway including routing rules, and hands-on exploration of the edge server's functionality. Key topics encompass the establishment of the edge server, Spring Cloud Gateway setup with routing configurations, and the practical exploration of this edge server configuration.

Key Insights:

Chapter 11, Securing Access to APIs

The "Securing Access to APIs" chapter provides comprehensive guidance on safeguarding exposed APIs using OAuth 2.0 and OpenID Connect. Readers are introduced to the establishment of an OAuth 2.0 authorization server based on Spring Authorization Server within the system landscape. This includes configuring the edge server and composite service to require valid access tokens issued by the authorization server, securing communication with external consumers via HTTPS, and replacing the internal OAuth 2.0 authorization server with an external OpenID Connect provider from Auth0 for enhanced security. This chapter focuses on enhancing security for APIs and web pages accessible through the edge server introduced previously. Readers gain insights into the utilization of HTTPS to mitigate eavesdropping risks during external API access. The chapter delves into the intricacies of OAuth 2.0 and OpenID Connect, enabling users and client applications to be authenticated and authorized for API access. Furthermore, readers learn about using HTTP Basic authentication to secure access to the Netflix Eureka discovery server. Key topics encompass an introduction to OAuth 2.0 and OpenID Connect, security considerations for the system landscape, HTTPS implementation, access protection for the discovery server, the integration of a local authorization server, authentication and authorization via OAuth 2.0 and OpenID Connect, and practical testing scenarios involving both local and external authorization servers.

Key Insights:

Chapter 12, Centralized Configuration

The "Centralized Configuration" chapter provides comprehensive guidance on streamlining configuration management for microservices by employing the Spring Cloud Config Server. This involves centralizing configuration files from various microservices into a single repository, subsequently using the Spring Config Server to efficiently distribute these configurations during runtime. Within this chapter, readers embark on a journey to understand and implement the Spring Cloud Config Server. It addresses the challenges that arise with managing configuration files across numerous microservices. By centralizing configuration files within a dedicated repository, the Spring Cloud Config Server facilitates easier management and updates. Through practical implementation, readers grasp the process of configuring microservices to retrieve their respective configurations from the central repository, enhancing efficiency and simplifying maintenance. Key topics include an introduction to the Spring Cloud Config Server, setting up the server, configuring client microservices to interact with the server, structuring the configuration repository, and hands-on exploration of the Spring Cloud Config Server's functionality.

Key Insights:

Chapter 13, Improving Resilience Using Resilience4j

The "Improving Resilience Using Resilience4j" chapter delves into leveraging Resilience4j's capabilities to enhance the resilience of microservices, focusing on mitigating errors and preventing the "chain of failure" anti-pattern. The chapter guides readers on integrating key mechanisms such as retrying, circuit breaking, and fallback methods into a composite service. By configuring the circuit breaker to fail fast when the circuit is open and implementing fallback strategies, readers learn to create a more robust and responsive microservices ecosystem. Within this chapter, readers gain practical insights into using Resilience4j to bolster the resilience of microservices. Building upon the concepts introduced in earlier chapters, the chapter emphasizes the role of circuit breakers, time limiters, and retry mechanisms in safeguarding against common error scenarios. By effectively integrating these mechanisms into the source code, readers are equipped with the skills to mitigate issues arising from slow or unresponsive microservices and intermittent request failures. Key topics encompass introducing Resilience4j mechanisms, their implementation in source code, and hands-on experimentation within the system landscape to validate the enhanced resilience achieved through these strategies.

Key Insights:

Chapter 14, Understanding Distributed Tracing

The "Understanding Distributed Tracing" chapter delves into the utilization of distributed tracing, specifically focusing on employing Zipkin to capture and visualize tracing data. This includes integrating Micrometer Tracing to imbue trace IDs into requests, enabling a comprehensive visualization of the interaction between cooperating microservices within request chains. Throughout this chapter, readers embark on an exploration of distributed tracing's critical role in enhancing comprehension of microservices' collaboration, especially when fulfilling external API requests. The chapter underscores the essential nature of distributed tracing for managing complex microservices landscapes. Building upon concepts introduced earlier, the chapter unveils how Micrometer Tracing facilitates trace data collection, while Zipkin serves as the platform for storing and visually representing this trace information. Key topics encompass introducing distributed tracing with Micrometer Tracing and Zipkin, practical integration of tracing into source code, dynamic addition of trace information, and visualizing diverse API request outcomes. This exploration covers both synchronous and asynchronous processing scenarios, offering readers a comprehensive understanding of the broader tracing landscape.

Key Insights:

Chapter 15, Introduction to Kubernetes

The "Introduction to Kubernetes" chapter serves as a primer on Kubernetes, elucidating its fundamental concepts and guiding readers through a sample deployment. The chapter equips readers with essential insights on setting up a local Kubernetes environment using Minikube, facilitating development and testing. In this chapter, readers embark on a journey into Kubernetes, the dominant container orchestrator in the contemporary landscape. Acknowledging the vastness of Kubernetes and container orchestration as a topic, the chapter distills the most critical aspects based on practical experience. Topics covered include the introduction of Kubernetes concepts, its API objects, and the runtime components that power its orchestration prowess. Readers delve into the creation of a local Kubernetes cluster, gaining hands-on experience with sample deployments, and familiarizing themselves with the kubectl Kubernetes CLI tool. The chapter underscores the importance of managing local Kubernetes environments, preparing readers for deeper explorations into Kubernetes' capabilities.

Key Insights:

Chapter 16, Deploying Our Microservices to Kubernetes

The "Deploying Our Microservices to Kubernetes" chapter is a practical guide that navigates readers through the deployment process of microservices on Kubernetes. By employing Helm, a Kubernetes package manager, readers are equipped with the knowledge of how to package and configure microservices for various runtime environments, streamlining deployment. The chapter also underscores the significance of Kubernetes' built-in support for service discovery, replacing the need for external tools like Netflix Eureka. Furthermore, the chapter delves into the utilization of Spring Boot features that aid in the seamless deployment of microservices in Kubernetes. Within this chapter, readers embark on the journey of deploying the microservices featured in the book onto the Kubernetes platform. Through the lens of Helm, a tool optimized for Kubernetes, the chapter unveils the art of packaging and configuring microservices for deployment across diverse runtime scenarios. Additionally, the inherent service discovery capabilities of Kubernetes, facilitated by Service objects and the kube-proxy component, are emphasized as a means to replace the previously employed Netflix Eureka. The chapter also offers insights into the incorporation of Spring Boot functionalities that contribute to the smooth deployment of microservices within the Kubernetes environment. With a focus on practicality, the chapter ensures readers are well-versed in deploying, managing, and verifying the functionality of their microservices in the Kubernetes landscape.

Key Insights:

Chapter 17, Implementing Kubernetes Features to Simplify the System Landscape

The "Implementing Kubernetes Features to Simplify the System Landscape" chapter elucidates how Kubernetes features can serve as alternatives to Spring Cloud services introduced earlier. Readers will discover the rationale behind replacing Spring Cloud Config Server with Kubernetes' Secrets and ConfigMaps, and understand the process of substituting Spring Cloud Gateway with Kubernetes Ingress objects. Moreover, the chapter navigates the integration of cert-manager to automate certificate provisioning and rotation for external HTTPS endpoints, streamlining the security process. Within the existing microservice architecture, various supporting services fulfill essential design patterns. This chapter strategically streamlines the landscape by integrating Kubernetes' native capabilities to manage these patterns, eliminating the need for extra deployed services. Spring Cloud Config Server is supplanted by Kubernetes ConfigMaps and Secrets, while the Spring Cloud Gateway finds its counterpart in Kubernetes Ingress objects functioning as edge servers. The introduction of cert-manager automates the cumbersome certificate provisioning and rotation, ensuring secure external APIs. Crucially, the chapter addresses the balance between leveraging Kubernetes features while maintaining microservices' platform independence. Concluding by demonstrating microservice deployment via Docker Compose and functional testing, readers gain insights into sustaining microservice functionality beyond the Kubernetes environment. In summary, "Implementing Kubernetes Features to Simplify the System Landscape" guides readers in strategically incorporating Kubernetes features as replacements for Spring Cloud services, optimizing the system's architecture and security. The integration of native Kubernetes capabilities, such as ConfigMaps, Secrets, Ingress objects, and cert-manager, elevates the efficiency and resilience of the microservice ecosystem while maintaining the flexibility to function beyond the Kubernetes platform.

Key Insights:

Chapter 18, Using a Service Mesh to Improve Observability and Management

In "Using a Service Mesh to Improve Observability and Management," the concept of a service mesh is introduced as a powerful tool to enhance the management and observability of a microservice ecosystem. The chapter dives into the implementation of a service mesh using Istio within the Kubernetes environment. By utilizing a service mesh, readers can expect to gain improved capabilities in resilience, security, traffic management, and monitoring within their microservice landscape. Throughout the chapter, readers are acquainted with the rationale behind adopting a service mesh. This technology addresses various challenges, such as enforcing security policies, enhancing resilience, and efficiently managing traffic flow. The significance of observability, which enables a clear visualization of traffic interactions among microservices, is emphasized. While some functions of a service mesh overlap with Spring Cloud and Kubernetes, this chapter clarifies that the majority of service mesh functionality complements these tools. Deploying Istio within Kubernetes is explored, and topics like secure observation, resilience assurance, zero-downtime updates, and Docker Compose-based testing are covered. The chapter not only introduces the concept of a service mesh but also demonstrates its practical application to elevate the management and monitoring aspects of microservices.

Key Insights:

Chapter 19, Centralized Logging with the EFK Stack

The chapter presents a comprehensive guide on implementing centralized log management using the EFK stack, consisting of Elasticsearch, Fluentd, and Kibana. This stack is a powerful open-source solution for collecting, storing, and visualizing log streams from microservices. The chapter illustrates how to deploy the EFK stack within a Minikube environment and effectively utilize it to analyze log records generated by various microservices. Readers will learn how to navigate the collected log data, search for specific information, and conduct root cause analyses. The chapter highlights the importance of consolidating log records from different microservice instances for better visibility and analysis. By utilizing Elasticsearch, a distributed database, and Fluentd, a versatile data collector, the EFK stack streamlines the collection, transformation, and storage of log data. Kibana complements this stack by offering an intuitive graphical interface to visualize search results and perform thorough analyses of the accumulated log records. Readers will gain insights into configuring Fluentd, deploying the EFK stack on Kubernetes, and leveraging the stack's capabilities to analyze log records from various microservices. This chapter equips readers with the tools needed to efficiently identify and resolve issues through root cause analysis, making centralized log management a crucial aspect of a well-managed microservices landscape.

Key Insights:

Chapter 20, Monitoring Microservices

"Monitoring Microservices" delves into the crucial aspect of effectively monitoring microservices deployed in Kubernetes using Prometheus and Grafana. The chapter underscores the significance of performance metrics for maintaining optimal application performance and resource utilization. By harnessing Prometheus and Grafana, developers gain the tools to collect, analyze, and visualize metrics, ensuring timely detection of anomalies and proactive resolution. The chapter demonstrates how to leverage existing Grafana dashboards to monitor diverse metrics, providing insights into response times, API requests, and resource consumption. Furthermore, it empowers readers to create customized dashboards tailored to their specific monitoring needs, enabling comprehensive visibility into the microservices landscape. A key focus is on setting up alerts within Grafana, a pivotal feature for proactively managing issues. By configuring alerts based on predefined thresholds, developers can receive notifications, including emails, when metric values surpass the designated limits, facilitating rapid response and troubleshooting. In summary, this chapter equips readers with the knowledge and tools needed to establish a robust monitoring framework using Prometheus and Grafana. By mastering these technologies, developers can uphold performance, optimize resource utilization, and ensure the reliability of microservices in a dynamic Kubernetes environment.

Key Insights:

Chapter 21, Installation Instructions for macOS

"Installation Instructions for macOS" provides a step-by-step guide for installing the necessary tools on Mac systems, catering to both Intel-based and Apple silicon (ARM64) architectures. The chapter focuses on enabling readers to seamlessly set up their environment to follow the instructions presented throughout the book. Within this chapter, readers are introduced to the essential technical prerequisites for successful installation. The guide covers the installation process for various tools required to effectively execute the commands outlined in the book. Additionally, readers gain insights into accessing the source code associated with the book's content, ensuring easy access to relevant examples and resources. The chapter's topics encompass technical requirements, tool installation, and source code accessibility, collectively offering a comprehensive foundation for readers to confidently proceed with the book's content on macOS.

Key Insights:

Chapter 22, Installation Instructions for Microsoft Windows with WSL 2 and Ubuntu

The chapter outlines a step-by-step guide to installing the necessary tools on a Windows PC using Windows Subsystem for Linux (WSL) v2, enabling readers to follow along with the book's content seamlessly. It focuses on creating a compatible environment for running commands introduced in the book.

Key Insights:

Chapter 23, Native Compiled Java Microservices

"Native Compiled Java Microservices" introduces readers to the concept of creating Spring-based microservices that are compiled into native code. This chapter delves into the novel native image support in Spring Framework 6 and Spring Boot 3, as well as the underlying GraalVM Native Image compiler. By adopting this approach, developers can generate microservices that exhibit nearly instantaneous startup times, a significant advantage over traditional Java Virtual Machine-based implementations. Throughout the chapter, readers gain insights into compiling Java source code into executable binary files known as Native Images. These images facilitate rapid startup and are characterized by efficient memory consumption. The discussion includes the Spring Ahead-of-Time (AOT) engine integrated into Spring Framework 6, along with GraalVM's Native Image compiler. The chapter underscores the potential benefits of native compilation and offers practical guidance for implementing this approach in microservices development.

Key Insights:

If you feel this book is for you, get your copy today! Coding

Know more on the Discord server Coding

You can get more engaged on the discord server for more latest updates and discussions in the community at Discord

Download a free PDF Coding

If you have already purchased a print or Kindle version of this book, you can get a DRM-free PDF version at no cost. Simply click on the link to claim your free PDF. Free-Ebook Coding We also provide a PDF file that has color images of the screenshots/diagrams used in this book at GraphicBundle Coding

Get to know the Author

Magnus Larsson is an IT industry veteran since 1986, has consulted for major Swedish firms like Volvo, Ericsson, and AstraZeneca. Despite past struggles with distributed systems, today's open-source tools like Spring Cloud, Kubernetes, and Istio offer effective solutions. For the past eight years, Magnus has been helping customers use these tools and shared insights through presentations and blog posts.

Other Related Books