Pay20Y / SEED

164 stars 40 forks source link

SE_ASTER

Introduction

This is the implementation of the paper "SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition" This code is based on the aster.pytorch, we sincerely thank ayumiymk for his awesome repo and help.

How to use

Env

PyTorch == 1.1.0
torchvision == 0.3.0
fasttext == 0.9.1

Details can be found in requirements.txt

Train

Prepare your data
Run

Test

Experiments

Evaluation on benchmarks

Checkpoint IIIT5K IC13-1015 IC13-857 IC15-1811 IC15-2077 SVT SVTP CUTE
OneDrive BaiduYun(key: x54e) 93.4 93.5 94.5 79.8 75.8 88.4 82.0 84.0

Evalution with lexicons

Methods IIIT5K-50 IIIT5K-1K SVT-50 IC13 IC15
ED 99.06 97.87 96.36 97.44 87.76
ED + SS 99.27 97.93 96.45 97.64 88.07

About the word embedding

IIIT5K IC13 IC15-1811 IC15-2077 SVT SVTP CUTE
94.6 93.8 85.0 79.6 90.9 84.2 85.4

Exploration on global information

IIIT5K IC13 IC15-1811 IC15-2077 SVT SVTP CUTE
93.8 91.3 78.7 - 90.1 81.6 81.9

Citation

@inproceedings{qiao2020seed,
  title={{SEED}: Semantics enhanced encoder-decoder framework for scene text recognition},
  author={Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping},
  booktitle={CVPR},
  year={2020},
}
@article{shi2018aster,
  title={{ASTER}: An attentional scene text recognizer with flexible rectification},
  author={Shi, Baoguang and Yang, Mingkun and Wang, Xinggang and Lyu, Pengyuan and Yao, Cong and Bai, Xiang},
  journal={TPAMI},
  volume={41},
  number={9},
  pages={2035--2048},
  year={2018},
  publisher={IEEE}
}