DelayedMatrixStats is a port of the matrixStats API to work with DelayedMatrix objects from the DelayedArray package.
For a DelayedMatrix, x
, the simplest way to apply a function, f()
,
from matrixStats ismatrixStats::f(as.matrix(x))
. However, this
“realizes” x
in memory as a base::matrix, which typically defeats
the entire purpose of using a DelayedMatrix for storing the data.
The DelayedArray package already implements a clever strategy called
“block-processing” for certain common “matrix stats” operations (e.g.
colSums()
, rowSums()
). This is a good start, but not all of the
matrixStats API is currently supported. Furthermore, certain
operations can be optimized with additional information about x
. I’ll
refer to these “seed-aware” implementations.
You can install DelayedMatrixStats from Bioconductor with:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("DelayedMatrixStats")
This example compares two ways of computing column sums of a DelayedMatrix object:
DelayedMatrix::colSums()
: The ‘block-processing strategy’,
implemented in the DelayedArray package. The block-processing
strategy works for any DelayedMatrix object, regardless of the
type of seed.DelayedMatrixStats::colSums2()
: The ‘seed-aware’ strategy,
implemented in the DelayedMatrixStats package. The seed-aware
implementation is optimized for both speed and memory but only for
DelayedMatrix objects with certain types of seed.library(DelayedMatrixStats)
library(sparseMatrixStats)
library(microbenchmark)
library(profmem)
set.seed(666)
# Fast column sums of DelayedMatrix with matrix seed
dense_matrix <- DelayedArray(matrix(runif(20000 * 600), nrow = 20000,
ncol = 600))
class(seed(dense_matrix))
#> [1] "matrix" "array"
dense_matrix
#> <20000 x 600> DelayedMatrix object of type "double":
#> [,1] [,2] [,3] ... [,599] [,600]
#> [1,] 0.7743685 0.6601787 0.4098798 . 0.89118118 0.05776471
#> [2,] 0.1972242 0.8436035 0.9198450 . 0.31799523 0.63099417
#> [3,] 0.9780138 0.2017589 0.4696158 . 0.31783791 0.02830454
#> [4,] 0.2013274 0.8797239 0.6474768 . 0.55217184 0.09678816
#> [5,] 0.3612444 0.8158778 0.5928599 . 0.08530977 0.39224147
#> ... . . . . . .
#> [19996,] 0.19490291 0.07763570 0.56391725 . 0.09703424 0.62659353
#> [19997,] 0.61182993 0.01910121 0.04046034 . 0.59708388 0.88389731
#> [19998,] 0.12932744 0.21155070 0.19344085 . 0.51682032 0.13378223
#> [19999,] 0.18985573 0.41716539 0.35110782 . 0.62939661 0.94601427
#> [20000,] 0.87889047 0.25308041 0.54666920 . 0.81630322 0.73272217
microbenchmark(DelayedArray::colSums(dense_matrix),
DelayedMatrixStats::colSums2(dense_matrix),
times = 10)
#> Warning in microbenchmark(DelayedArray::colSums(dense_matrix), DelayedMatrixStats::colSums2(dense_matrix), :
#> less accurate nanosecond times to avoid potential integer overflows
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> DelayedArray::colSums(dense_matrix) 36.26811 40.05528 87.89183 42.91652 49.70672 278.0928 10
#> DelayedMatrixStats::colSums2(dense_matrix) 12.07319 12.24256 12.50835 12.53206 12.70734 12.8938 10
profmem::total(profmem::profmem(DelayedArray::colSums(dense_matrix)))
#> [1] 96106072
profmem::total(profmem::profmem(DelayedMatrixStats::colSums2(dense_matrix)))
#> [1] 6064
# Fast, low-memory column sums of DelayedMatrix with sparse matrix seed
sparse_matrix <- seed(dense_matrix)
zero_idx <- sample(length(sparse_matrix), 0.6 * length(sparse_matrix))
sparse_matrix[zero_idx] <- 0
sparse_matrix <- DelayedArray(Matrix::Matrix(sparse_matrix, sparse = TRUE))
class(seed(sparse_matrix))
#> [1] "dgCMatrix"
#> attr(,"package")
#> [1] "Matrix"
sparse_matrix
#> <20000 x 600> sparse DelayedMatrix object of type "double":
#> [,1] [,2] [,3] ... [,599] [,600]
#> [1,] 0.7743685 0.0000000 0.0000000 . 0.89118118 0.00000000
#> [2,] 0.1972242 0.0000000 0.9198450 . 0.00000000 0.00000000
#> [3,] 0.9780138 0.0000000 0.4696158 . 0.31783791 0.00000000
#> [4,] 0.0000000 0.8797239 0.6474768 . 0.55217184 0.00000000
#> [5,] 0.3612444 0.0000000 0.0000000 . 0.08530977 0.39224147
#> ... . . . . . .
#> [19996,] 0.1949029 0.0776357 0.0000000 . 0.09703424 0.00000000
#> [19997,] 0.0000000 0.0000000 0.0000000 . 0.00000000 0.88389731
#> [19998,] 0.0000000 0.2115507 0.1934408 . 0.00000000 0.00000000
#> [19999,] 0.1898557 0.0000000 0.3511078 . 0.62939661 0.94601427
#> [20000,] 0.8788905 0.2530804 0.0000000 . 0.00000000 0.73272217
microbenchmark(DelayedArray::colSums(sparse_matrix),
DelayedMatrixStats::colSums2(sparse_matrix),
times = 10)
#> Unit: milliseconds
#> expr min lq mean median uq max
#> DelayedArray::colSums(sparse_matrix) 145.485138 147.451908 199.555520 151.754715 173.112209 384.247039
#> DelayedMatrixStats::colSums2(sparse_matrix) 5.284654 5.392238 5.455612 5.449802 5.522536 5.643978
#> neval
#> 10
#> 10
profmem::total(profmem::profmem(DelayedArray::colSums(sparse_matrix)))
#> [1] 249647440
profmem::total(profmem::profmem(DelayedMatrixStats::colSums2(sparse_matrix)))
#> [1] 4848
# Fast column sums of DelayedMatrix with Rle-based seed
rle_matrix <- RleArray(Rle(sample(2L, 200000 * 6 / 10, replace = TRUE), 100),
dim = c(2000000, 6))
class(seed(rle_matrix))
#> [1] "SolidRleArraySeed"
#> attr(,"package")
#> [1] "DelayedArray"
rle_matrix
#> <2000000 x 6> RleMatrix object of type "integer":
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 2 2 1 1 1 2
#> [2,] 2 2 1 1 1 2
#> [3,] 2 2 1 1 1 2
#> [4,] 2 2 1 1 1 2
#> [5,] 2 2 1 1 1 2
#> ... . . . . . .
#> [1999996,] 1 2 2 1 1 1
#> [1999997,] 1 2 2 1 1 1
#> [1999998,] 1 2 2 1 1 1
#> [1999999,] 1 2 2 1 1 1
#> [2000000,] 1 2 2 1 1 1
microbenchmark(DelayedArray::colSums(rle_matrix),
DelayedMatrixStats::colSums2(rle_matrix),
times = 10)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> DelayedArray::colSums(rle_matrix) 393.768059 397.620132 448.117179 412.378390 476.314179 605.87922 10
#> DelayedMatrixStats::colSums2(rle_matrix) 1.946147 2.239174 8.924917 2.819098 3.871302 61.91156 10
profmem::total(profmem::profmem(DelayedArray::colSums(rle_matrix)))
#> [1] 168003192
profmem::total(profmem::profmem(DelayedMatrixStats::colSums2(rle_matrix)))
#> [1] 1968
An extensive set of benchmarks is under development at http://peterhickey.org/BenchmarkingDelayedMatrixStats/.
Method | Block processing | base::matrix optimized | Matrix::dgCMatrix optimized | Matrix::lgCMatrix optimized | DelayedArray::RleArray (SolidRleArraySeed) optimized | DelayedArray::RleArray (ChunkedRleArraySeed) optimized | HDF5Array::HDF5Matrix optimized | base::data.frame optimized | S4Vectors::DataFrame optimized |
---|---|---|---|---|---|---|---|---|---|
colAlls() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colAnyMissings() |
✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colAnyNAs() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colAnys() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colAvgsPerRowSet() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colCollapse() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colCounts() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colCummaxs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colCummins() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colCumprods() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colCumsums() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colDiffs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colIQRDiffs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colIQRs() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colLogSumExps() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colMadDiffs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colMads() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colMaxs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colMeans2() |
✔ | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ |
colMedians() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colMins() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colOrderStats() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colProds() |
✔ | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ |
colQuantiles() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colRanges() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colRanks() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colSdDiffs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colSds() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colsum() |
☑️ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colSums2() |
✔ | ✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ |
colTabulates() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colVarDiffs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colVars() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colWeightedMads() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colWeightedMeans() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colWeightedMedians() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
colWeightedSds() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
colWeightedVars() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowAlls() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowAnyMissings() |
✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowAnyNAs() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowAnys() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowAvgsPerColSet() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowCollapse() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowCounts() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowCummaxs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowCummins() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowCumprods() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowCumsums() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowDiffs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowIQRDiffs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowIQRs() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowLogSumExps() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowMadDiffs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowMads() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowMaxs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowMeans2() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowMedians() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowMins() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowOrderStats() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowProds() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowQuantiles() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowRanges() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowRanks() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowSdDiffs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowSds() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowsum() |
☑️ | ❌ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowSums2() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowTabulates() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowVarDiffs() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowVars() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowWeightedMads() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowWeightedMeans() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowWeightedMedians() |
✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowWeightedSds() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |
rowWeightedVars() |
✔ | ✔ | ✔ | ✔ | ❌ | ❌ | ❌ | ❌ | ❌ |