RGF-team / rgf

Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.
378 stars 58 forks source link
decision-forest decision-trees ensemble-model kaggle machine-learning ml regularized-greedy-forest rgf

Python and R tests DOI arXiv.org Python Versions PyPI Version CRAN Version

Regularized Greedy Forest

Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better results than gradient boosted decision trees (GBDT) on a number of datasets and it has been used to win a few Kaggle competitions. Unlike the traditional boosted decision tree approach, RGF works directly with the underlying forest structure. RGF integrates two ideas: one is to include tree-structured regularization into the learning formulation; and the other is to employ the fully-corrective regularized greedy algorithm.

This repository contains the following implementations of the RGF algorithm:

You may want to get interesting information about RGF from the posts collected in Awesome RGF.