RecBole-CDR is a library built upon RecBole for reproducing and developing cross-domain recommendation algorithms.
recbole==1.0.1
torch>=1.7.0
python>=3.7.0
With the source code, you can use the provided script for initial usage of our library:
python run_recbole_cdr.py
This script will run the CMF model with ml-1m as source domain dataset and ml-100k as target domain dataset.
If you want to change the models, just run the script by setting additional command parameters:
python run_recbole_cdr.py --model=[model]
We list currently supported Cross-Domain Recommendation models:
We collected and organized three pairs of datasets with one source domain and one target domain which are commonly used in cross-domain recommendation. Here we provide these datasets for reference:
Amazon
datasets;Book-Crossing
datasets;Douban
datasets;We carefully tune the hyper-parameters of the implemented models on these datasets and we provide these hyper-parameters here for reference:
Amazon
datasets; Book-Crossing
datasets; Douban
datasets; Please let us know if you encounter a bug or have any suggestions by filing an issue.
We welcome all contributions from bug fixes to new features and extensions.
We expect all contributions discussed in the issue tracker and going through PRs.
RecBole-CDR is developed and maintained by members from RUCAIBox, the main developers are Zihan Lin (@linzihan-backforward), Gaowei Zhang (@Wicknight) and Shanlei Mu (@ShanleiMu).
The implementation is based on the open-source recommendation library RecBole.
Please cite the following paper as the reference if you use our code or processed datasets.
@inproceedings{zhao2021recbole,
title={Recbole: Towards a unified, comprehensive and efficient framework for recommendation algorithms},
author={Wayne Xin Zhao and Shanlei Mu and Yupeng Hou and Zihan Lin and Kaiyuan Li and Yushuo Chen and Yujie Lu and Hui Wang and Changxin Tian and Xingyu Pan and Yingqian Min and Zhichao Feng and Xinyan Fan and Xu Chen and Pengfei Wang and Wendi Ji and Yaliang Li and Xiaoling Wang and Ji-Rong Wen},
booktitle={{CIKM}},
year={2021}
}