ReaFly / ACSNet

MICCAI 2020 : Adaptive Context Selection for Polyp Segmentation (Pytorch implementation).
54 stars 4 forks source link

Adaptive Context Selection for Polyp Segmentation

Introduction

This repository contains the PyTorch implementation of:

Adaptive Context Selection for Polyp Segmentation, MICCAI 2020.

Requirements

Usage

1. Training

python train.py  --mode train  --dataset kvasir_SEG  
--train_data_dir /path-to-train_data  --valid_data_dir  /path-to-valid_data

2. Inference

python test.py  --mode test  --load_ckpt checkpoint 
--dataset kvasir_SEG    --test_data_dir  /path-to-test_data

Citation

If you feel this work is helpful, please cite our paper

@inproceedings{zhang2020adaptive,
  title={Adaptive Context Selection for Polyp Segmentation},
  author={Zhang, Ruifei and Li, Guanbin and Li, Zhen and Cui, Shuguang and Qian, Dahong and Yu, Yizhou},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={253--262},
  year={2020},
  organization={Springer}
}