Platform for processing and reviewing images from automated insect monitoring stations. Intended for collaborating on multi-deployment projects, maintaining metadata and orchestrating multiple machine learning pipelines for analysis.
The platform uses Docker Compose to run all services locally for development. Install Docker Desktop and run the following command:
$ docker compose up
Install the pre-commit tool to run linting & formatting checks before each git commit. It's typical to install this tool using your system-wide python.
pip install pre-commit # Install pre-commit system-wide
pre-commit install # Install the hook for our project
If using VS Code, install the formatting extensions that are automatically suggested for the project (e.g. black). Format-on-save should be turned on by default from the project's vscode settings file.
By default this will try to connect to http://localhost:8000 for the backend API. Use the env var API_PROXY_TARGET
to change this. You can create multiple .env
files in the ui/
directory for different environments or configurations. For example, use yarn start --mode staging
to load .env.staging
and point the API_PROXY_TARGET
to a remote backend.
Note: if you installed the ui using Docker first (as instructed in the quick-start) then your local node_modules/
directory will be owned by root. Change the permissions with:
sudo chown -R ${UID}:${UID} ui/node_modules
. The version of Node on your host machine must match that of the Docker container (which will be the case if you follow the nvm
instructions below.)
# Enter into the ui directory
cd ui
# Install Node Version Manager
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash
# Install required Node.js version
nvm install
# Install Yarn dependencies
yarn install
# Start the frontend
yarn start
Visit http://localhost:3000/
All backend packages are installed in the docker containers, however for faster auto-completion and intellisense, you can install them on the host machine:
python -m venv venv
source venv/bin/activate
pip install -r requirements/local.txt
docker compose up -d
docker compose logs -f django celeryworker
docker compose logs -f
docker compose run --rm django python manage.py createsuperuser
docker compose run --rm django python manage.py test
docker compose run --rm django python manage.py test -k pattern
docker compose run --rm django python manage.py test -k pattern --failfast --pdb
docker-compose exec django python manage.py shell
>>> from ami.main.models import SourceImage, Occurrence
>>> SourceImage.objects.all(project__name='myproject')
python -m venv venv
source venv/bin/activate
pip install -r requirements/local.txt
docker compose run --rm django python manage.py spectacular --api-version 'api' --format openapi --file ami-openapi-schema.yaml
docker run --rm -v ${PWD}:/local openapitools/openapi-generator-cli generate -i /local/ami-openapi-schema.yaml -g typescript-axios -o /local/ui/src/api-schema.d.ts
docker compose run --rm django python manage.py graph_models -a -o models.dot --dot
dot -Tsvg models.dot > models.svg
Each project manages its own external data storage where the AMI Platform will index and process images. This is most typically a public or private S3 bucket at a cloud provider that is not AWS. For example, the Swift object storage service at Compute Canada or a university's own storage service.
To test the S3 storage backend locally, Minio is configured to run as part of the docker compose stack.
To configure a project connect to the Minio service, you can use the following config:
Endpoint URL: http://minio:9000
Access key: amistorage
Secret access key: amistorage
Public base URL: http://localhost:9000/ami/
Bucket: ami
ami
bucket (one subfolder per deployment)minio
hostname to localhost.127.0.0.1 minio
The local environment uses the console
email backend. To view emails sent by the platform, check the console output (run the docker compose logs -f django celeryworker
command).
The local environment uses a local PostgreSQL database in a Docker container.
docker compose run --rm postgres backup
docker compose run --rm django python manage.py reset_db
docker compose run --rm postgres backups
docker compose run --rm postgres restore <backup_file_name>
docker compose run --rm django python manage.py migrate