Rostifar / NYUDepthNet

A Tensorflow interface for the paper: Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture (***Deprecated***)
44 stars 15 forks source link

Deprecated

Please note that this repository is longer functional and only exists for archival purposes. Since the release of this repository, several other approaches (e.g. https://arxiv.org/abs/1609.03677) have produced superior results; therefore, I recommend that you explore these methods instead. Regardless, the model.py provides a "barebones" implementation without weights or display tools.

DepthNet

DepthNet is an unofficial Tensorflow implementation of Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture. Note: This repository was created for a research project, not associated with NYU, to explore the implications of residual neural networks for monocular depth estimation and smartphone-based spatial mapping. These modifications were not included in this repository for compeleteness. If you would like these modification, please email me at rcbridendev@gmail.com.

Installation

There are two ways to install NYUDepthNet - Automatic and Manual. The latter is complex to configure, so it's recommended that you use the Automatic method.

Automatic

This is the recommended way to install NYUDepthNet.

Manual

This installation method is more complex; however, it does grant increased customizability.

Example Images

alt text alt text alt text alt text