python attention_mil.py --DS 'datasets/messidor' --pooling_layer 'uot_pooling' --f_method 'sinkhorn' --num 4
python adgcl.py --DS 'IMDB-BINARY' --pooling_layer 'rot_pooling' --f_method 'badmm-e' --num 4
python ddi_gin.py --DS 'fears' --pooling_layer 'uot_pooling' --f_method 'badmm-e' --num 4
The setting of parameters refer to the github link: https://github.com/pytorch/examples/tree/main/imagenet
python resnet_imagenet.py --f_method 'badmm-e' --num 4
DS
is the dataset.
pooling_layer
is the pooling layer chosen for the backbone, including add_pooling, mean_pooling, max_pooling, deepset,
mix_pooling, gated_pooling, set_set, attention_pooling, gated_attention_pooling, dynamic_pooling, GeneralizedNormPooling,
SAGPooling, ASAPooling, OTK, SWE, WEGL, uot_pooling, rotpooling. Uot_pooling corresponds to "ROTP(a_0=0)" and rot_pooling corresponds to
"ROTP(learned a_0)" in the paper.
f_method
could be badmm-e, badmm-q, sinkhorn
num
corresponds to K-step feed-forward computation. The default value is 4.
If our work can help you, please cite it
@ARTICLE{10247589,
author={Xu, Hongteng and Cheng, Minjie},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Regularized Optimal Transport Layers for Generalized Global Pooling Operations},
year={2023},
volume={},
number={},
pages={1-18},
doi={10.1109/TPAMI.2023.3314661}}