SKTBrain / KoBERT

Korean BERT pre-trained cased (KoBERT)
Apache License 2.0
1.31k stars 369 forks source link
bert korean-nlp language-model nlp pytorch transformers

KoBERT


Korean BERT pre-trained cased (KoBERT)

Why'?'

Training Environment

predefined_args = {
        'attention_cell': 'multi_head',
        'num_layers': 12,
        'units': 768,
        'hidden_size': 3072,
        'max_length': 512,
        'num_heads': 12,
        'scaled': True,
        'dropout': 0.1,
        'use_residual': True,
        'embed_size': 768,
        'embed_dropout': 0.1,
        'token_type_vocab_size': 2,
        'word_embed': None,
    }
데이터 문장 단어
한국어 위키 5M 54M

2019-04-29 텐서보드 로그

Requirements

How to install


How to use

PyTorch

Huggingface transformers API가 편하신 분은 여기를 참고하세요.

>>> import torch
>>> from kobert import get_pytorch_kobert_model
>>> input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
>>> input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
>>> model, vocab  = get_pytorch_kobert_model()
>>> sequence_output, pooled_output = model(input_ids, input_mask, token_type_ids)
>>> pooled_output.shape
torch.Size([2, 768])
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> sequence_output[0]
tensor([[-0.2461,  0.2428,  0.2590,  ..., -0.4861, -0.0731,  0.0756],
        [-0.2478,  0.2420,  0.2552,  ..., -0.4877, -0.0727,  0.0754],
        [-0.2472,  0.2420,  0.2561,  ..., -0.4874, -0.0733,  0.0765]],
       grad_fn=<SelectBackward>)

model은 디폴트로 eval()모드로 리턴됨, 따라서 학습 용도로 사용시 model.train()명령을 통해 학습 모드로 변경할 필요가 있다.

ONNX

>>> import onnxruntime
>>> import numpy as np
>>> from kobert import get_onnx_kobert_model
>>> onnx_path = get_onnx_kobert_model()
>>> sess = onnxruntime.InferenceSession(onnx_path)
>>> input_ids = [[31, 51, 99], [15, 5, 0]]
>>> input_mask = [[1, 1, 1], [1, 1, 0]]
>>> token_type_ids = [[0, 0, 1], [0, 1, 0]]
>>> len_seq = len(input_ids[0])
>>> pred_onnx = sess.run(None, {'input_ids':np.array(input_ids),
>>>                             'token_type_ids':np.array(token_type_ids),
>>>                             'input_mask':np.array(input_mask),
>>>                             'position_ids':np.array(range(len_seq))})
>>> # Last Encoding Layer
>>> pred_onnx[-2][0]
array([[-0.24610452,  0.24282141,  0.25895312, ..., -0.48613444,
        -0.07305173,  0.07560554],
       [-0.24783179,  0.24200465,  0.25520486, ..., -0.4877185 ,
        -0.0727044 ,  0.07536091],
       [-0.24721591,  0.24196623,  0.2560626 , ..., -0.48743123,
        -0.07326943,  0.07650235]], dtype=float32)

ONNX 컨버팅은 soeque1께서 도움을 주셨습니다.

MXNet-Gluon

>>> import mxnet as mx
>>> from kobert import get_mxnet_kobert_model
>>> input_id = mx.nd.array([[31, 51, 99], [15, 5, 0]])
>>> input_mask = mx.nd.array([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = mx.nd.array([[0, 0, 1], [0, 1, 0]])
>>> model, vocab = get_mxnet_kobert_model(use_decoder=False, use_classifier=False)
>>> encoder_layer, pooled_output = model(input_id, token_type_ids)
>>> pooled_output.shape
(2, 768)
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> encoder_layer[0]
[[-0.24610372  0.24282135  0.2589539  ... -0.48613444 -0.07305248
   0.07560539]
 [-0.24783105  0.242005    0.25520545 ... -0.48771808 -0.07270523
   0.07536077]
 [-0.24721491  0.241966    0.25606337 ... -0.48743105 -0.07327032
   0.07650219]]
<NDArray 3x768 @cpu(0)>

Tokenizer

>>> from gluonnlp.data import SentencepieceTokenizer
>>> from kobert import get_tokenizer
>>> tok_path = get_tokenizer()
>>> sp  = SentencepieceTokenizer(tok_path)
>>> sp('한국어 모델을 공유합니다.')
['▁한국', '어', '▁모델', '을', '▁공유', '합니다', '.']

Task Fine-tuning

Naver Sentiment Analysis

Model Accuracy
BERT base multilingual cased 0.875
KoBERT 0.901
KoGPT2 0.899

KoBERT와 CRF로 만든 한국어 객체명인식기

문장을 입력하세요:  SKTBrain에서 KoBERT 모델을 공개해준 덕분에 BERT-CRF 기반 객체명인식기를 쉽게 개발할 수 있었다.
len: 40, input_token:['[CLS]', '▁SK', 'T', 'B', 'ra', 'in', '에서', '▁K', 'o', 'B', 'ER', 'T', '▁모델', '을', '▁공개', '해', '준', '▁덕분에', '▁B', 'ER', 'T', '-', 'C', 'R', 'F', '▁기반', '▁', '객', '체', '명', '인', '식', '기를', '▁쉽게', '▁개발', '할', '▁수', '▁있었다', '.', '[SEP]']
len: 40, pred_ner_tag:['[CLS]', 'B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', '[SEP]']
decoding_ner_sentence: [CLS] <SKTBrain:ORG>에서 <KoBERT:POH> 모델을 공개해준 덕분에 <BERT-CRF:POH> 기반 객체명인식기를 쉽게 개발할 수 있었다.[SEP]

Korean Sentence BERT

Model Cosine Pearson Cosine Spearman Euclidean Pearson Euclidean Spearman Manhattan Pearson Manhattan Spearman Dot Pearson Dot Spearman
NLl 65.05 68.48 68.81 68.18 68.90 68.20 65.22 66.81
STS 80.42 79.64 77.93 77.43 77.92 77.44 76.56 75.83
STS + NLI 78.81 78.47 77.68 77.78 77.71 77.83 75.75 75.22

Release

Contacts

KoBERT 관련 이슈는 이곳에 등록해 주시기 바랍니다.

License

KoBERTApache-2.0 라이선스 하에 공개되어 있습니다. 모델 및 코드를 사용할 경우 라이선스 내용을 준수해주세요. 라이선스 전문은 LICENSE 파일에서 확인하실 수 있습니다.