SNU-VGILab / InstantDrag

InstantDrag: Improving Interactivity in Drag-based Image Editing
https://joonghyuk.com/instantdrag-web/
Other
194 stars 17 forks source link

InstantDrag

Demo video


Official implementation of the paper "InstantDrag: Improving Interactivity in Drag-based Image Editing" (SIGGRAPH Asia 2024).


Setup

  1. Create and activate a conda environment:

    conda create -n instantdrag python=3.10 -y
    conda activate instantdrag
  2. Install PyTorch:

    pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu121
  3. Install other dependencies:

    pip install transformers==4.44.2 diffusers==0.30.1 accelerate==0.33.0 gradio==4.44.0 opencv-python

    Note: Exact version matching may not be necessary for all dependencies.

Demo

To run the demo:

cd demo/
CUDA_VISIBLE_DEVICES=0 python run_demo.py

Disclaimer

Usage Instructions & Tips

Note: The initial run may take longer as models are loaded to GPU.

BibTeX

If you find this work useful, please cite them as below!

@inproceedings{shin2024instantdrag,
      title     = {{InstantDrag: Improving Interactivity in Drag-based Image Editing}},
      author    = {Shin, Joonghyuk and Choi, Daehyeon and Park, Jaesik},
      booktitle = {ACM SIGGRAPH Asia 2024 Conference Proceedings},
      year      = {2024},
      pages     = {1--10},
}