SXQ-STUDY / BSSNet

10 stars 1 forks source link

This is the project page for paper:BSSNet: A Real-Time Semantic Segmentation Network for Road Scenes Inspired from AutoEncoder

overview-of-our-method

Highlights

overview-of-our-method

Updates

Experimental results

Model (Cityscapes) Val (% mIOU) Test (% mIOU) FPS
BSSNet-T 79.0 78.8 115.8
BSSNet-B 80.6 80.5 39.2
Model (CamVid) Val (% mIOU) Test (% mIOU) FPS
BSSNet-T - 79.5 170.8
BSSNet-B - 81.6 94.3
Model (NightCity) Val (% mIOU) FPS
BSSNet-T 52.6 172.3
BSSNet-B 53.7 117.2

Getting Started

Prerequisites

Training

Evaluation

Train a custom dataset

Citation

If you think this implementation is useful for your work, please cite our paper:

@ARTICLE{10286565,
  author={Shi, Xiaoqiang and Yin, Zhenyu and Han, Guangjie and Liu, Wenzhuo and Qin, Li and Bi, Yuanguo and Li, Shurui},
  journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
  title={BSSNet: A Real-Time Semantic Segmentation Network for Road Scenes Inspired From AutoEncoder}, 
  year={2024},
  volume={34},
  number={5},
  pages={3424-3438},
  keywords={Real-time systems;Semantics;Semantic segmentation;Feature extraction;Data mining;Computer architecture;Task analysis;Real-time semantic segmentation;convolution neural networks;AutoEncoder;feature fusion},
  doi={10.1109/TCSVT.2023.3325360}}

Acknowledgement