This is the project page for paper:BSSNet: A Real-Time Semantic Segmentation Network for Road Scenes Inspired from AutoEncoder
Model (Cityscapes) | Val (% mIOU) | Test (% mIOU) | FPS |
---|---|---|---|
BSSNet-T | 79.0 | 78.8 | 115.8 |
BSSNet-B | 80.6 | 80.5 | 39.2 |
Model (CamVid) | Val (% mIOU) | Test (% mIOU) | FPS |
---|---|---|---|
BSSNet-T | - | 79.5 | 170.8 |
BSSNet-B | - | 81.6 | 94.3 |
Model (NightCity) | Val (% mIOU) | FPS |
---|---|---|
BSSNet-T | 52.6 | 172.3 |
BSSNet-B | 53.7 | 117.2 |
BSSNet_configs/_base_/datasets/xx(dataset).py
python -m torch.distributed.launch --nproc_per_node=num_gpu tools/train.py BSSNet_configs\bssnet-cityscapes\bssnet-t-b12-120k-1024x1024-cityscapes.py --launcher pytorch
python tools/test.py BSSNet_configs\bssnet-cityscapes\bssnet-t-b12-120k-1024x1024-cityscapes.py checkpoint_path
If you think this implementation is useful for your work, please cite our paper:
@ARTICLE{10286565,
author={Shi, Xiaoqiang and Yin, Zhenyu and Han, Guangjie and Liu, Wenzhuo and Qin, Li and Bi, Yuanguo and Li, Shurui},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
title={BSSNet: A Real-Time Semantic Segmentation Network for Road Scenes Inspired From AutoEncoder},
year={2024},
volume={34},
number={5},
pages={3424-3438},
keywords={Real-time systems;Semantics;Semantic segmentation;Feature extraction;Data mining;Computer architecture;Task analysis;Real-time semantic segmentation;convolution neural networks;AutoEncoder;feature fusion},
doi={10.1109/TCSVT.2023.3325360}}