Samreay / ChainConsumer

Corner plots, LaTeX tables and plotting walks.
https://samreay.github.io/ChainConsumer
MIT License
82 stars 18 forks source link

ChainConsumer

Codacy Badge Build Status Coverage Status License

PyPi Conda DOI JOSS

A library to consume your fitting chains! Produce likelihood surfaces, plot your walks to check convergence, output a LaTeX table of the marginalised parameter distributions with uncertainties and significant figures all done for you, or throw in a bunch of chains from different models and perform some model selection!

Click through to the online documentation

Installation

Install via pip:

pip install chainconsumer

Python Versions

Time has ticked on, and now only python 3.10 will be supported. This is because type hints are amazing.

Developing

  1. Clone repo
  2. Run make install
  3. Ensure that you set your python interpreter to the .venv/bin/python
  4. Code away.

Contributors

I would like to thank the following people for their contribution in issues, algorithms and code snippets which have helped improve ChainConsumer:

Common Issues

Users on some Linux platforms have reported issues rendering plots using ChainConsumer. The common error states that dvipng: not found, and as per StackOverflow post, it can be solved by explicitly install the matplotlib dependency dvipng via sudo apt-get install dvipng.

If you are running on HPC or clusters where you can't install things yourself, users may run into issues where LaTeX or other optional dependencies aren't installed. In this case, set usetex=False in configure to request matplotlib not try to use TeX. If this does not work, also set serif=False, which has helped some uses.

Update History

1.1.2
1.1.1
1.1.0
1.0.3
1.0.2
1.0.1
1.0.0
0.34.0
0.32.0
0.31.2, 0.31.3
0.31.1
0.31.0
0.30.1
0.30.0
0.29.1
0.29.0
0.28.0
0.27.0
0.26.3
0.26.2
0.26.1
0.26.0
0.25.2
0.25.1
0.25.0
0.24.3
0.24.2
0.24.1
0.24.0
0.23.2
0.23.1
0.23.0
0.22.0
0.21.7
0.21.6
0.21.5
0.21.4
0.21.3
0.21.2
0.21.1
0.21.0
0.20.0
0.19.4
0.19.3
0.19.2
0.19.1
0.19.0
0.18.0
0.17.4
0.17.3
0.17.2
0.17.1
0.17.0
0.16.5
0.16.4
0.16.3
0.16.2
0.16.1
0.16.0
0.15.7
0.15.6
0.15.5
0.15.4
0.15.3
0.15.2
0.15.1
0.15.0
0.14.0
0.13.3
0.13.2
0.13.1
0.13.0
0.12.0
0.11.3
0.11.2
0.11.1
0.11.0
0.10.2
0.10.1
0.10.0
0.9.10
0.9.9
0.9.8
0.9.7
0.9.6
0.9.5
0.9.4
0.9.3
0.9.2
0.9.1
0.9.0