It is the training program for libfacedetection. The source code is based on MMDetection. Some data processing functions from SCRFD modifications.
Visualization of our network architecture: [netron].
conda create -n yunet python=3.8
conda activate yunet
# LINUX:
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch-lts -c nvidia
# WINDOWS:
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch-lts -c conda-forge
On GPU platforms (cu10.2):
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch-lts
# cu11.1
pip install mmcv-full==1.3.17 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
# cu10.2
pip install mmcv-full==1.3.17 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html
$TRAIN_ROOT
.
git clone https://github.com/ShiqiYu/libfacedetection.train.git
cd libfacedetection.train
python setup.py develop
pip install -r requirements.txt
Note:
Ctrl + click
to origin line and replace torch.ao
to torch
$TRAIN_ROOT/data/widerface
as follows:
$ tree data/widerface
data/widerface
├── wider_face_split
├── WIDER_test
├── WIDER_train
├── WIDER_val
└── labelv2
├── train
│ └── labelv2.txt
└── val
├── gt
└── labelv2.txt
NOTE: \
The labelv2
comes from SCRFD.
Following MMdetection training processing.
CUDA_VISIBLE_DEVICES=0,1 bash tools/dist_train.sh ./configs/yunet_n.py 2 12345
python tools/detect_image.py ./configs/yunet_n.py ./weights/yunet_n.pth ./image.jpg
python tools/test_widerface.py ./configs/yunet_n.py ./weights/yunet_n.pth --mode 2
Performance on WIDER Face (Val): confidence_threshold=0.02, nms_threshold=0.45, in origin size:
AP_easy=0.892, AP_medium=0.883, AP_hard=0.811
The following bash code can export a CPP file for project libfacedetection
python tools/yunet2cpp.py ./configs/yunet_n.py ./weights/yunet_n.pth
Export to onnx model for libfacedetection/example/opencv_dnn.
python tools/yunet2onnx.py ./configs/yunet_n.py ./weights/yunet_n.pth
Inference on exported ONNX models using ONNXRuntime:
python tools/compare_inference.py ./onnx/yunet_n.onnx --mode AUTO --eval --score_thresh 0.02 --nms_thresh 0.45
Some similar approaches(e.g. SCRFD, Yolo5face, retinaface) to inference are also supported.
With Intel i7-12700K and input_size = origin size, score_thresh = 0.02, nms_thresh = 0.45
, some results are list as follow:
Model | AP_easy | AP_medium | AP_hard | #Params | Params Ratio | MFlops (320x320) | FPS(320x320) |
---|---|---|---|---|---|---|---|
SCRFD0.5(ICLR2022) | 0.892 | 0.885 | 0.819 | 631,410 | 8.32x | 184 | 284 |
Retinaface0.5(CVPR2020) | 0.907 | 0.883 | 0.742 | 426,608 | 5.62X | 245 | 235 |
YuNet_n(Ours) | 0.892 | 0.883 | 0.811 | 75,856 | 1.00x | 149 | 456 |
YuNet_s(Ours) | 0.887 | 0.871 | 0.768 | 54,608 | 0.72x | 96 | 537 |
The compared models can be downloaded from Google Drive.
We published a paper for the main idea of this repository:
@article{yunet,
title={YuNet: A Tiny Millisecond-level Face Detector},
author={Wu, Wei and Peng, Hanyang and Yu, Shiqi},
journal={Machine Intelligence Research},
pages={1--10},
year={2023},
doi={10.1007/s11633-023-1423-y},
publisher={Springer}
}
The paper can be open accessed at https://link.springer.com/article/10.1007/s11633-023-1423-y.
The loss used in training is EIoU, a novel extended IoU. More details can be found in:
@article{eiou,
author={Peng, Hanyang and Yu, Shiqi},
journal={IEEE Transactions on Image Processing},
title={A Systematic IoU-Related Method: Beyond Simplified Regression for Better Localization},
year={2021},
volume={30},
pages={5032-5044},
doi={10.1109/TIP.2021.3077144}
}
The paper can be open accessed at https://ieeexplore.ieee.org/document/9429909.
We also published a paper on face detection to evaluate different methods.
@article{facedetect-yu,
author={Feng, Yuantao and Yu, Shiqi and Peng, Hanyang and Li, Yan-Ran and Zhang, Jianguo},
journal={IEEE Transactions on Biometrics, Behavior, and Identity Science},
title={Detect Faces Efficiently: A Survey and Evaluations},
year={2022},
volume={4},
number={1},
pages={1-18},
doi={10.1109/TBIOM.2021.3120412}
}
The paper can be open accessed at https://ieeexplore.ieee.org/document/9580485