ShotaArima / demo-lowprofool

0 stars 0 forks source link

このリポジトリは、LowProFoolのリポジトリを再現するためにDockerで再現するためにしたものです。
This repository is my hands-on repository from LowProFool by GithubLowProFool.

Disclaimer: This repository is not maintained anymore


LowProFool

LowProFool is an algorithm that generates imperceptible adversarial examples

This GitHub hosts the code to replicate the experiments presented in the paper:

Ballet, V., Renard, X., Aigrain, J., Laugel, T., Frossard, P., & Detyniecki, M. (2019). Imperceptible Adversarial Attacks on Tabular Data. NeurIPS 2019 Workshop on Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy (Robust AI in FS 2019)

https://arxiv.org/abs/1911.03274

Adverse.py

Contains the implementation of LowProFool [1] along with an modifier version of DeepFool [2] that handles tabular datasets.

Metrics.py

Implements metrics introduced in [1]

Playground.ipynb

A demo python notebook to generate adversarial examples on the German Credit dataset and compare the results to DeepFool

References

[1] Ballet, V., Renard, X., Aigrain, J., Laugel, T., Frossard, P., & Detyniecki, M. (2019). Imperceptible Adversarial Attacks on Tabular Data. NeurIPS 2019 Workshop on Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy (Robust AI in FS 2019)

[2] S. Moosavi-Dezfooli, A. Fawzi, P. Frossard: DeepFool: a simple and accurate method to fool deep neural networks. In Computer Vision and Pattern Recognition (CVPR ’16), IEEE, 2016.


データセットの中身

checking_status duration credit_amount savings_status employment installment_commitment residence_since age existing_credits num_dependents own_telephone foreign_worker target
<0 6.0 1169.0 no known savings >=7 4.0 4.0 67.0 2.0 1.0 yes yes 1.0
0<=X<200 48.0 5951.0 <100 1<=X<4 2.0 2.0 22.0 1.0 1.0 none yes 0.0
no checking 12.0 2096.0 <100 4<=X<7 2.0 3.0 49.0 1.0 2.0 none yes 1.0
<0 42.0 7882.0 <100 4<=X<7 2.0 4.0 45.0 1.0 2.0 none yes 1.0
<0 24.0 4870.0 <100 1<=X<4 3.0 4.0 53.0 2.0 2.0 none yes 0.0