このリポジトリは、LowProFoolのリポジトリを再現するためにDockerで再現するためにしたものです。
This repository is my hands-on repository from LowProFool by GithubLowProFool.
Disclaimer: This repository is not maintained anymore
LowProFool is an algorithm that generates imperceptible adversarial examples
This GitHub hosts the code to replicate the experiments presented in the paper:
Ballet, V., Renard, X., Aigrain, J., Laugel, T., Frossard, P., & Detyniecki, M. (2019). Imperceptible Adversarial Attacks on Tabular Data. NeurIPS 2019 Workshop on Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy (Robust AI in FS 2019)
https://arxiv.org/abs/1911.03274
Contains the implementation of LowProFool [1] along with an modifier version of DeepFool [2] that handles tabular datasets.
Implements metrics introduced in [1]
A demo python notebook to generate adversarial examples on the German Credit dataset and compare the results to DeepFool
[1] Ballet, V., Renard, X., Aigrain, J., Laugel, T., Frossard, P., & Detyniecki, M. (2019). Imperceptible Adversarial Attacks on Tabular Data. NeurIPS 2019 Workshop on Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy (Robust AI in FS 2019)
[2] S. Moosavi-Dezfooli, A. Fawzi, P. Frossard: DeepFool: a simple and accurate method to fool deep neural networks. In Computer Vision and Pattern Recognition (CVPR ’16), IEEE, 2016.
checking_status | duration | credit_amount | savings_status | employment | installment_commitment | residence_since | age | existing_credits | num_dependents | own_telephone | foreign_worker | target |
---|---|---|---|---|---|---|---|---|---|---|---|---|
<0 | 6.0 | 1169.0 | no known savings | >=7 | 4.0 | 4.0 | 67.0 | 2.0 | 1.0 | yes | yes | 1.0 |
0<=X<200 | 48.0 | 5951.0 | <100 | 1<=X<4 | 2.0 | 2.0 | 22.0 | 1.0 | 1.0 | none | yes | 0.0 |
no checking | 12.0 | 2096.0 | <100 | 4<=X<7 | 2.0 | 3.0 | 49.0 | 1.0 | 2.0 | none | yes | 1.0 |
<0 | 42.0 | 7882.0 | <100 | 4<=X<7 | 2.0 | 4.0 | 45.0 | 1.0 | 2.0 | none | yes | 1.0 |
<0 | 24.0 | 4870.0 | <100 | 1<=X<4 | 3.0 | 4.0 | 53.0 | 2.0 | 2.0 | none | yes | 0.0 |