We provide PyTorch implementations for GAN-based mutliple exposure stack generation.
If you use the code for your research work, please cite our papers.
@inproceedings{lee2018deep,
title={Deep recursive hdri: Inverse tone mapping using generative adversarial networks},
author={Lee, Siyeong and Hwan An, Gwon and Kang, Suk-Ju},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={596--611},
year={2018}
}
Conda environment
conda create -n hdr python=3.6
conda activate hdr
conda install -c anaconda mkl
conda install pytorch==1.0.0 torchvision==0.2.1 cuda100 -c pytorch
install requirements.txt
pip install -r requirements.txt
Please download two model weights below and organize the downloaded files as follows:
DeepRecursive_HDRI
├──Result
└──model
├── HDRGAN_stopdown_G_param_ch3_batch1_epoch20_lr0.0002.pkl
└── HDRGAN_stopup_G_param_ch3_batch1_epoch20_lr0.0002.pkl
Prepare your test images
DeepRecursive_HDRI
├──input
├── t10.png
├── t11.png
Run the pretrained model
python test.py --test_dataset './input'
output
DeepRecursive_HDRI
├──Result
├── t10 (multi exposure stack)
├── t11 (multi exposure stack)
Note: We used the HDR Toolbox implementation of [Debevec and Malik 1997] to generate the results in our paper.
Model Name | model weight |
---|---|
Deep Recursive HDRI | stopdown stopup |
Copyright (c) 2020, Siyeong Lee. All rights reserved.
The code is distributed under a BSD license. See LICENSE
for information.