A deep learning model of enzyme optimal temperature.
sequence_ogt_topt.csv obtained from https://github.com/jafetgado/tomer.
pH opt data obtained from EpHod: https://zenodo.org/records/8011249.
Tm data obtained from https://github.com/liimy1/DeepTM/tree/master/Data.
/code
directory and run prediction: python seq2topt.py --input [input.csv] --output [output file name]
The same for seq2tm.py and seq2pHopt.py in /code
.
/data/hyparams/best_topt_param.pkl
and /data/model_pth/model_topt_r2test=0.5002.pth
/data/hyparams/default.pkl
and ../data/model_pth/model_Tm_r2=0.682152.pth
/data/hyparams/default.pkl
and ../data/model_pth/model_pHopt_rmse=0.064849.pth
/code/model.py
to develop other predictive models for proteins. /code/Model_evaluation.ipynb
/code/CaseStudy_thermophile.ipynb
/code/AnalysisResidueAttention.ipynb
/code/CaseStudy_mutations.ipynb
1.Pytorch: https://pytorch.org/
2.ESM: https://github.com/facebookresearch/esm
3.Scikit-learn: https://scikit-learn.org/
4.Seaborn statistical data visualization:https://seaborn.pydata.org/index.html
Qiu, S., Hu, B., Zhao, J., Xu, W., Yang, A. (2024). Seq2Topt: A Sequence-Based Deep Learning Predictor of Enzyme Optimal Temperature. doi:10.1101/2024.08.12.607600