Specy / rooc

A language for compiling formal mathematical models into static models which are transformed to be solved
https://rooc.specy.app
MIT License
4 stars 0 forks source link
compiler interpreter math rust simplex sveltekit wasm

ROOC

Mathematical models compiler

Go to the documentation (WIP)

ROOC stands for the courses I took in university—Ricerca Operativa (Operational Research) and Ottimizzazione Combinatoria (Combinatorial Optimization)—which deal with solving optimization models.

What it is

ROOC is a compiler designed to parse and convert formal optimization models into static formulations. These static formulations can be transformed into linear models which can then be solved using optimization techniques.

The language provides support for defining formal models, including functions, constants, arrays, graphs, tuples, etc... It also includes built-in utility functions for iterating over graphs, edges, arrays, ranges, and more.

The library is compiled as a WebAssembly (WASM) module and integrated into the web editor, which features Language Server Protocol (LSP) support for type checking, code completion, and documentation.

Implemented Features

Example

Given the formal model of the Dominating set problem, which shows most of the features of the language:

min sum(u in nodes(G)) { x_u }
s.t. 
    x_v + sum((_, u) in neigh_edges(v)) { x_u } >= 1 for v in nodes(G)
where
    let G = Graph {
        A -> [B, C, D, E, F],
        B -> [A, E, C, D, J],
        C -> [A, B, D, E, I],
        D -> [A, B, C, E, H],
        E -> [A, B, C, D, G],
        F -> [A, G, J],
        G -> [E, F, H],
        H -> [D, G, I],
        I -> [C, H, J],
        J -> [B, F, I]
    }
define
    x_u, x_v as Boolean for v in nodes(G), (_, u) in neigh_edges(v)

It is compiled down to:

min x_A + x_B + x_C + x_D + x_E + x_F + x_G + x_H + x_I + x_J
s.t.
        x_A + x_B + x_D + x_C + x_F + x_E >= 1
        x_B + x_D + x_E + x_J + x_C + x_A >= 1
        x_C + x_B + x_D + x_I + x_A + x_E >= 1
        x_D + x_E + x_H + x_C + x_A + x_B >= 1
        x_E + x_B + x_D + x_C + x_A + x_G >= 1
        x_F + x_J + x_G + x_A >= 1
        x_G + x_E + x_F + x_H >= 1
        x_H + x_D + x_I + x_G >= 1
        x_I + x_J + x_H + x_C >= 1
        x_J + x_F + x_I + x_B >= 1

If the compilation finds a type mismatch (for example, function parameters or compound variable flattening), a stack trace will be generated:

Wrong argument Expected argument of type "Number", got "Graph" evaluating "D"
        at 3:30 D
        at 3:28 C[D]
        at 3:18 enumerate(C[D])
        at 3:9  sum(j in enumerate(C[D])) { j }
        at 3:9  sum(j in enumerate(C[D])) { j } <= x_i for i in 0..len(C)

The model can then be solved using the Binary solver pipeline, which will solve the compiled model and find the optimal solution which has value 3 with assignment:

F   F   F   F   T   F   F   F   T   T

Notes

This project is purely educational, it shouldn't be used to solve serious problems as it won't be optimized for big calculations