Spurioustrillium / tari

The Tari protocol
https://tari.com
BSD 3-Clause "New" or "Revised" License
0 stars 0 forks source link

Build

The Tari protocol

A number of applications have been developed by the Tari community to implement the Tari protocol. These are:

Only the first four applications will be discussed in this README.

Installing using binaries

Download

Download binaries from . This is the easiest way to run a Tari node, but you're essentially trusting the person that built and uploaded them that nothing untoward has happened.

We've limited the risks by publishing hashes of the binaries alongside the binaries on our website. You can check that the binaries match the hash by opening a terminal (or command prompt) and by running

(*nix)

sha256sum <PATH_TO_BINARY_INSTALL_FILE>

(Windows)

certUtil -hashfile <PATH_TO_BINARY_INSTALL_FILE> SHA256

Install

After you have downloaded the binaries, you need to install them. This is easy to do, and works as follows:

On *Nix

Assuming you want to install the Tari applications into your home folder, then, from within a terminal:

cd ~
tar -xf <PATH_TO_BINARY_INSTALL_FILE>

After this, the Tari applications will be located in ~/tari_stibbons_testnet with a selection of soft links to run them.

On Windows

Just double-click the installer and accept all the default prompts. The Tari applications will be located in the folder you selected during installation, and can be run by double-clicking the various shortcuts or via the Windows menu (Tari Testnet).

Runtime links

Use the one-click miner

Execute the start_all soft link/shortcut; this will start everything you need depending on the choices you make when prompted:

Start all applications individually

Building from source

To build the Tari codebase from source, there are a few dependencies you need to have installed.

Install development packages

First you'll need to make sure you have a full development environment set up:

(macOS)

brew update
brew install cmake openssl tor coreutils
brew install --cask powershell

(Ubuntu 18.04, including WSL-2 on Windows)

sudo apt-get update
sudo apt-get -y install openssl libssl-dev pkg-config libsqlite3-dev clang git cmake libc++-dev libc++abi-dev libprotobuf-dev protobuf-compiler libncurses5-dev libncursesw5-dev
sudo apt-get install -y wget apt-transport-https
sudo wget -q "https://packages.microsoft.com/config/ubuntu/$(lsb_release -rs)/packages-microsoft-prod.deb"
sudo dpkg -i packages-microsoft-prod.deb
sudo apt-get update
sudo add-apt-repository universe
sudo apt-get install -y powershell

(Windows)

First you'll need to make sure you have a full development environment set up:

Install Rust (*nix)

You can follow along at The Rust Website or just follow these steps to get Rust installed on your machine.

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Then make sure that cargo has been added to your path.

export PATH="$HOME/.cargo/bin:$PATH"

Install Rust (Windows 10)

Follow the installation process for Windows at The Rust Website. Then make sure that cargo and rustc has been added to your path:

cargo --version
rustc --version

Checkout the source code

In your directory of choice (e.g. %USERPROFILE%\Code on Windows), clone the Tari repo

git clone https://github.com/tari-project/tari.git

Build

Grab a cup of coffee and begin the Tari build

(*nix)

cd tari
cargo build --release

(Windows)

This is similar to building in Ubuntu, except the Microsoft Visual Studio environment must be sourced. Open the appropriate x64\x86 Native Tools Command Prompt for VS 2019, and in your main Tari directory perform the build, which will create the executable inside your %USERPROFILE%\Code\tari\target\release directory:

cd %USERPROFILE%\Code\tari
cargo build --release

A successful build should output something as follows

   Compiling tari_wallet v0.0.9 (.../tari/base_layer/wallet)
   Compiling test_faucet v0.0.1 (.../tari/applications/test_faucet)
   Compiling tari_wallet_ffi v0.0.9 (.../tari/base_layer/wallet_ffi)
   Compiling tari_base_node v0.0.9 (.../tari/applications/tari_base_node)
    Finished release [optimized] target(s) in 12m 24s

Compiled executable can be found by following path:

./target/release/tari_base_node
./target/release/tari_console_wallet
./target/release/tari_merge_mining_proxy
./target/release/tari_mining_node

Alternatively, cargo can build and install the executable into ~/.cargo/bin (%USERPROFILE%\.cargo\bin on Windows), so it will be executable from anywhere on your system.

cargo install --path=applications/tari_base_node --force
cargo install --path=applications/tari_console_wallet --force
cargo install --path=applications/tari_merge_mining_proxy --force
cargo install --path=applications/tari_mining_node --force

Alternatively, cargo can build and install the executable into %USERPROFILE%\.cargo\bin, so it will be executable from anywhere on your system.

cargo install --path=applications/tari_base_node --force
cargo install --path=applications/tari_console_wallet --force
cargo install --path=applications/tari_merge_mining_proxy --force
cargo install --path=applications/tari_mining_node --force

Run

The executables will either be inside your ~/tari/target/release (on Linux) or %USERPROFILE%\Code\tari\target\release (on Windows) directory, or alternatively, inside your ~/.cargo/bin (on Linux) %USERPROFILE%\.cargo\bin (on Windows) directory, depending on the build choice above, and must be run from the command line. If the former build method was used, you can run it from that directory, or you more likely want to copy it somewhere more convenient.

To run from any directory of your choice, where the executable is visible in the path (first time use):

tari_base_node --init --create-id
tari_base_node

tari_console_wallet --init

tari_merge_mining_proxy

tari_mining_node --init

Consecutive runs:

tari_base_node

tari_console_wallet

tari_merge_mining_proxy

tari_mining_node

Alternatively, you can run the Tari applications from your source directory using cargo, and just omit the --release flag if you want to run in debug mode (first time use):

cargo run --bin tari_base_node --release --  --init --create-id
cargo run --bin tari_base_node --release

cargo run --bin tari_merge_mining_proxy --release

cargo run --bin tari_console_wallet --release --  --init

cargo run --bin tari_mining_node --release

Consecutive runs:

cargo run --bin tari_base_node --release

cargo run --bin tari_console_wallet --release

cargo run --bin tari_merge_mining_proxy --release

cargo run --bin tari_mining_node --release

Using all the default options, the blockchain database, wallet database, console wallet database, log files and all configuration files will be created in the ~/.tari (on Linux) or %USERPROFILE%\.tari (on Windows) directory. Alternatively, by specifying --base-path <base-path> on the command line as well, all of this will be created in that directory.

Advanced build configurations

Using Docker

Running the base node with a docker image

Tari Base Node Docker images can be found at https://quay.io/repository/tarilabs/tari_base_node

Using docker-compose.yaml

version: "3"

services:
  tari_base_node:
    image: quay.io/tarilabs/tari_base_node:v0.5.4
    restart: unless-stopped
    volumes:
      - ./data:/root/.tari
# These 2 params are required for an interactive docker-compose session
    stdin_open: true
    tty: true
    expose:
      - 18142
    ports:
      - "18142:18142"

Then run docker-compose up -d to start your docker service.

Check the running state with docker-compose ps

        Name           Command    State            Ports
------------------------------------------------------------------
tbn_tari_base_node_1   start.sh   Up      0.0.0.0:18142->18142/tcp

To connect to the console, use docker ps to get the container ID which to attach to the tari_base_node in docker

CONTAINER ID        IMAGE                                    COMMAND             CREATED             STATUS              PORTS                      NAMES
73427509a4bb        quay.io/tarilabs/tari_base_node:v0.5.4   "start.sh"          45 minutes ago      Up 26 minutes       0.0.0.0:18142->18142/tcp   tbn_tari_base_node_1

With the container ID 73427509a4bb, connect to the tari_base_node console as follows docker attach 73427509a4bb

>> help
Available commands are:
help, version, get-chain-metadata, list-peers, reset-offline-peers, ban-peer, unban-peer, list-connections, list-headers, 
check-db, calc-timing, discover-peer, get-block, search-utxo, search-kernel, search-stxo, get-mempool-stats, 
get-mempool-state, whoami, get-state-info, quit, exit
>> get-chain-metadata
Height of longest chain : 5228
Geometric mean of longest chain : 5892870
Best block : 2c4f92854b2160324b8afebaa476b39be4004d2a7a19c69dd2d4e4da257bfee2
Pruning horizon : 0
Effective pruned height : 0
>> get-state-info
Current state machine state:
Synchronizing blocks: Syncing from the following peers:
510c83279adc7cb7d7dda0aa07
Syncing 5229/5233

Building a docker image

If you don't want to use the docker images provided by the community, you can roll your own!

First, clone the Tari repo

git clone git@github.com:tari-project/tari.git

Then build the image using the dockerfile in buildtools. The base node docker file build the application and then places the binary inside a small container, keeping the executable binary to a minimum.

docker build -t tari_base_node:latest -f ./buildtools/base_node.Dockerfile .

Test your image

docker run --rm -ti tari_base_node tari_base_node --help

Run the base node

docker run -ti -v /path/to/config/dir:/root/.tari tari_base_node

Default docker builds for base x86-64 CPU. Better performing builds can be created by passing build options

docker build -t tari_base_node:performance --build-arg TBN_ARCH=skylake --build-arg TBN_FEATURES=avx2 -f ./buildtools/base_node.Dockerfile .

Mining

The Tari protocol supports hybrid mining; stand-alone SHA3 mining using the Tari Mining Node or merged mining with Monero using the Tari Merge Mining Proxy in conjunction with XMRig (RandomX based mining). Blocks to be won by stand-alone SHA3 mining has been apportioned to approximately 40% and with Monero merged mining to approximately 60%. This apportionment is deeply baked into the Tari protocol and part of the consensus rules. The 40/60 split is determined by slightly different block target times for each algorithm, that when combined will give an average block time of approximately 120s. Each mining algorithms make use of Linear Weighted Moving Average (LWMA) maths to gracefully adjust the target difficulties to adhere to the respective target block times. Any block won by either mining algorithm will be accepted, and when there is a tie a geometric mean calculation will be used to decide the winner. This system is completely fair without any additional empirical meddling to try and force a certain outcome.

Tari SHA3 mining

In order to perform SHA3 mining with Tari, the following applications are needed:

Runtime prerequisites

The Tari Base Node, Tari Console Wallet and Tari Mining Node can all run in the same directory. By performing the default installation as described in Installing using binaries, all these applications will be available.

Configuration prerequisites

The configuration prerequisites are the same for all three Tari applications. After performing a default installation, locate the main configuration file (config.toml), which will be created in the ~/tari_stibbons_testnet/config (on Linux) or %USERPROFILE%\.tari-testnet\config (on Windows) directory.

With the main configuration file, in addition to the settings already present, the following must also be enabled for the Tari Base Node and the Tari Console Wallet, if they are not enabled already. Under section base_node.stibbons:

  [base_node.stibbons]
  transport = "tor"
  allow_test_addresses = false
  grpc_enabled = true
  grpc_base_node_address = "127.0.0.1:18142"
  grpc_console_wallet_address = "127.0.0.1:18143"

For the Tari Mining Node there are some additional settings under section mining_node that can be changed:

  [mining_node]
  # Number of mining threads
  # Default: number of logical CPU cores
  #num_mining_threads=8

  # GRPC address of base node
  # Default: value from `base_node.grpc_base_node_address`
  #base_node_grpc_address = "127.0.0.1:18142"

  # GRPC address of console wallet
  # Default: value from `base_node.grpc_console_wallet_address`
  #wallet_grpc_address = "127.0.0.1:18143"

  # Start mining only when base node is bootstrapped
  # and current block height is on the tip of network
  # Default: true
  #mine_on_tip_only=true

  # Will check tip with node every N seconds and restart mining
  # if height already taken and option `mine_on_tip_only` is set
  # to true
  # Default: 30 seconds
  #validate_tip_timeout_sec=30

Perform SHA3 mining

Tor and the required Tari applications must be started and preferably in this order:

Look out for the following types of messages on the Tari Mining Node console to confirm that it is connected properly and performing mining:

2021-02-26 11:24:23.604202000 [tari_mining_node] INFO  Connecting to base node at http://127.0.0.1:18151
2021-02-26 11:24:23.606260800 [tari_mining_node] INFO  Connecting to wallet at http://127.0.0.1:18161
2021-02-26 11:24:23.721890400 [tari_mining_node::miner] INFO  Mining thread 0 started
2021-02-26 11:24:23.722287800 [tari_mining_node::miner] INFO  Mining thread 1 started
2021-02-26 11:24:23.722505500 [tari_mining_node::miner] INFO  Mining thread 2 started
2021-02-26 11:28:19.687855700 [tari_mining_node::miner] INFO  Mining thread 2 stopped
2021-02-26 11:28:19.688251200 [tari_mining_node] INFO  Miner 2 found block header BlockHeader { hash: [...], version: 1, 
  height: 8493, prev_hash: [...], timestamp: Some(Timestamp { seconds: 1614331698, nanos: 0 }), output_mr: [...],
  range_proof_mr: [...], total_kernel_offset: [...], nonce: 8415580256943728281, pow: Some(ProofOfWork { pow_algo: 2, 
  pow_data: [] }), kernel_mmr_size: 24983, output_mmr_size: 125474 } with difficulty 7316856839

Tari merge mining

In order to perform merge mining with Tari, the following applications are needed:

The Tari Merge Mining Proxy will be the communication gateway between all these applications and will coordinate all activities. It will also submit finalized Tari and Monero blocks to the respective networks when RandomX is solved at the respective difficulties.

Runtime prerequisites

The Tari Base Node, Tari Console Wallet and Tari Merge Mining Proxy can all run in the same directory, whereas XMRig will run in its own directory. By performing the default installation as described in Installing using binaries, all these applications will be available.

XMRig can also be build from sources. If that is your preference, follow these instructions: https://xmrig.com/docs/miner/.

Configuration prerequisites

Tari applications

The configuration prerequisites are the same for all three Tari applications. After performing a default installation, locate the main configuration file (config.toml), which will be created in the ~/tari_stibbons_testnet/config (on Linux) or %USERPROFILE%\.tari-testnet\config (on Windows) directory.

With the main configuration file, in addition to the settings already present, the following must also be enabled if they are not enabled already:

And then depending on if you are using solo mining or self-select mining you will use one of the following:

Solo mining

Note: The ports 7878, 18142 and 18143 shown in the example above should not be in use by other processes. If they are, choose different ports. You will need to update the ports in the steps below as well.

The monerod_url must be set to a valid address (host:port) for monerod that is running Monero mainnet (e.g. http://18.132.124.81:18081) or stagenet (e.g. http://18.133.55.120:38081), which can be a public node hosted by XMR.to, or to a local instance. To test if the monerod_url address is working properly, try to paste host:port/get_height in an internet browser, for example:

http://18.132.124.81:18081/get_height

A typical response would be:

{
  "hash": "ce32dd0a6e3220d57c368f2cd01e5980a9b4d70f02b27274d67142d5b26cb4d6",
  "height": 2277206,
  "status": "OK",
  "untrusted": false
}

_Note: A guide to setting up a local Monero stagenet on Linux can be found here._

XMRig configuration

The XMRig configuration must be prepared for either solo or pool merged mining with Monero. It is advisable to use a configuration file for XMRig as this offers more flexibility, otherwise, the configuration parameters can be passed in via the command line upon runtime.

Notes:

Solo mining

The XMRig configuration wizard can be used to create a solo mining configuration file in JSON format:

Using the public stagenet wallet address above the resulting configuration file should look like this:

{
    "autosave": true,
    "cpu": true,
    "opencl": false,
    "cuda": false,
    "pools": [
        {
            "coin": "monero",
            "url": "127.0.0.1:7878",
            "user": "55LTR8KniP4LQGJSPtbYDacR7dz8RBFnsfAKMaMuwUNYX6aQbBcovzDPyrQF9KXF9tVU6Xk3K8no1BywnJX6GvZX8yJsXvt",
            "tls": false,
            "daemon": true
        }
    ]
}
Pool mining with Self-Select

For pool mining, the configuration file obtained from the XMRig configuration wizard must be augmented with Tari specific settings. Using the wizard, create the following:

Mining pool cryptonote.social requires you to add a personalized handle to the wallet address so that you can query your own pool statistics, separated by a full stop, i.e. <YOUR WALLET ADDRESS>.<pool specific user name>. For demonstration purposes, donatemonero has been associated with the public mainnet wallet address above. If you go to https://cryptonote.social/xmr and enter donatemonero in the Username: text box you will see some merge mining activity for that address. The configuration file used for this exercise is shown below:

{
    "autosave": true,
    "cpu": true,
    "opencl": false,
    "cuda": false,
    "pools": [
        {
            "coin": "monero",
            "algo": "rx/0",
            "url": "cryptonote.social:5555",
            "user": "888tNkZrPN6JsEgekjMnABU4TBzc2Dt29EPAvkRxbANsAnjyPbb3iQ1YBRk1UXcdRsiKc9dhwMVgN5S9cQUiyoogDavup3H.donatemonero",
            "pass": "start_diff=220000;payment_scheme=pprop;donate=0.5",
            "tls": false,
            "keepalive": true,
            "nicehash": false,
            "self-select": "127.0.0.1:7878",
            "submit-to-origin": true
        }
    ]
}

Perform merge mining

Tor and the required Tari applications must be started and preferably in this order:

In addition, select one of the merge mining options as outlined in solo or pool mining in the next paragraphs.

Solo merged mining with Monero

This paragraph is applicable to solo mining Monero on mainnet or stagenet and solo mining Tari on testnet.

Solo merged mining with Monero is supported using the daemon option.

Merge Mining Proxy configuration

As mentioned previously, the monerod_url field in the config.toml should be enabled for the corresponding mainnet or stagenet network Monero wallet address:

# URL to monerod
#monerod_url = "http://18.132.124.81:18081" # mainnet
monerod_url = "http://18.133.55.120:38081" # stagenet
Runtime

Ensure the config.json configuration file discussed in Solo mining is copied to the XMRig build or install folder, then start XMRig:

Look out for the following outputs in the XMRig console to confirm that it is connected to the Merge Mining Proxy and accepting jobs:

* POOL #1      127.0.0.1:7878 coin monero
[2021-01-21 12:10:18.960]  net      use daemon 127.0.0.1:7878  127.0.0.1
[2021-01-21 12:10:18.960]  net      new job from 127.0.0.1:7878 diff 286811 algo rx/0 height 756669
[2021-01-21 12:10:56.730]  cpu      rejected (0/1) diff 286811 "Block not accepted" (656 ms)
[2021-01-21 12:10:57.398]  net      new job from 127.0.0.1:7878 diff 293330 algo rx/0 height 756670
[2021-01-21 12:12:23.695]  miner    speed 10s/60s/15m 4089.0 4140.2 n/a H/s max 4390.9 H/s
[2021-01-21 12:12:57.983]  cpu      accepted (1/1) diff 293330 (594 ms)

The cpu: rejected and cpu: accepted messages originates from stagenet or mainnet monerod, and shows the Monero statistics. At this point, the mined and rejected Tari coinbases should be visible in the Tari Console Wallet.

Pool merged mining with Monero (self select)

This paragraph is applicable to pool mining Monero on mainnet and solo mining Tari on testnet.

Pool merged mining with Monero is supported using the Stratum mode self-select option via XMRig. Two mining pools we have tried out that support this feature are monero-pool, with its reference pool implementation running here, and cryptonote.social. With normal self select mode, XMRig requests a Monero block
template from a third party and submits the solution to the mining pool. Tari added a submit-to-origin option to the self select mode whereby, if a solution has been found that only matches the pool difficulty, XMRig will submit the solution to the pool only, but if the achieved difficulty meets both that of the pool and Tari, it will be submitted to the Merge Mining Proxy as well as to the mining pool.

Merge Mining Proxy configuration

The monerod_url field in the config.toml should be enabled for the mainnet value:

# URL to monerod
monerod_url = "http://18.132.124.81:18081" # mainnet
#monerod_url = "http://18.133.55.120:38081" # stagenet
Runtime

Ensure the config.json configuration file discussed in Pool mining with self select is copied to the XMRig build or install folder, then start XMRig as before for solo mining.

Look out for the following outputs in the XMRig console to confirm that it is connected to the pool and the Merge Mining Proxy and accepting jobs:

* POOL #1      cryptonote.social:5555 coin monero self-select 127.0.0.1:7878 submit-to-origin
[2021-01-18 11:40:48.392]  net      new job from cryptonote.social:5555 diff 220006 algo rx/0 height 2277084
[2021-01-18 11:41:22.378]  origin   submitted to origin daemon (1/0)  diff 284557 vs. 371742
[2021-01-18 11:41:22.812]  cpu      accepted (1/0) diff 220006 (433 ms)
[2021-01-18 11:41:39.201]  miner    speed 10s/60s/15m 1562.2 1630.4 n/a H/s max 1710.0 H/s
[2021-01-18 11:42:06.320]  cpu      accepted (2/0) diff 220006 (482 ms)

Status essages origin: submitted to origin daemon (1/0) and origin: not submitted to origin daemon, difficulty too low (1/1) pertains to submissions to the Tari network, and cpu: accepted (1/0) to the pool.

Mined and rejected Tari coinbases should be visible in the Tari Console Wallet, and pool shares in the pool interface. If you are using cryptonote.social:5555 as in the example above, go to https://cryptonote.social/xmr and type in your wallet identity under Username: to see your shares, or try taritest if you used this configuration example.

Project documentation

RFC documents

The RFCs are long-form technical documents proposing changes and features to the Tari network and ecosystem. They are hosted at https://rfc.tari.com, but you can easily build and serve alocal version yourself.

Firstly, install mdbook. Assuming you have Rust and cargo installed, run

cargo install mdbook

Then, from the RFC directory, run

mdbook serve

and the RFC documentation will be available at http://localhost:3000.

Source code documentation

Run

cargo doc

to generate the documentation. The generated html sits in target/doc/. Alternatively, to open a specific package's documentation directly in your browser, run

cargo doc -p <package> --open

Code organisation

See RFC-0110/CodeStructure for details on the code structure and layout.

Conversation channels

Non-technical discussions and gentle sparring.

Forum-style Q&A and other Tari-related discussions.

Follow @tari to be the first to know about important updates and announcements about the project.

Most of the technical conversation about Tari development happens on #FreeNode IRC in the #tari-dev room.