SwanHubX / SwanLab

⚡️SwanLab: your ML experiment notebook. 你的AI实验笔记本,日志记录与可视化AI训练全流程。
https://swanlab.cn?utm_source=github_description-hompage
Apache License 2.0
494 stars 48 forks source link
data-science deep-learning fastapi jax machine-learning mlops model-versioning python pytorch tensorboard tensorflow tracking transformers visualization

Overview

🔥SwanLab 在线版 · 📃 文档 · 报告问题 · 建议反馈 · 更新日志 [![license][license-shield]][license-shield-link] [![last-commit][last-commit-shield]][last-commit-shield-link] [![pypi-version][pypi-version-shield]][pypi-version-shield-link] [![pypi-downloads][pypi-downloads-shield]][pypi-downloads-shield-link] [![issues][issues-shield]][issues-shield-link]
[![swanlab-cloud][swanlab-cloud-shield]][swanlab-cloud-shield-link] [![wechat][wechat-shield]][wechat-shield-link] [![colab][colab-shield]][colab-shield-link] 中文 / [English](README_EN.md) / [日本語](README_JP.md) / [Русский](README_RU.md) 👋 加入我们的[微信群](https://geektechstudio.feishu.cn/wiki/NIZ9wp5LRiSqQykizbGcVzUKnic)

目录


👋🏻 什么是SwanLab

SwanLab 是一款开源、轻量的 AI 实验跟踪工具,提供了一个跟踪、比较、和协作实验的平台。

SwanLab 提供了友好的 API 和漂亮的界面,结合了超参数跟踪、指标记录、在线协作、实验链接分享等功能,让您可以快速跟踪 AI 实验、可视化过程、记录超参数,并分享给伙伴。

以下是其核心特性列表:

1. 📊 实验指标与超参数跟踪: 极简的代码嵌入您的机器学习 pipeline,跟踪记录训练关键指标

2. ⚡️ 全面的框架集成: PyTorch、Tensorflow、PyTorch Lightning、🤗HuggingFace、Transformers、MMEngine、Ultralytics、fastai、Tensorboard、OpenAI、ZhipuAI、Hydra、...

3. 📦 组织实验: 集中式仪表板,快速管理多个项目与实验,通过整体视图速览训练全局

4. 🆚 比较结果: 通过在线表格与对比图表比较不同实验的超参数和结果,挖掘迭代灵感

5. 👥 在线协作: 您可以与团队进行协作式训练,支持将实验实时同步在一个项目下,您可以在线查看团队的训练记录,基于结果发表看法与建议

6. ✉️ 分享结果: 复制和发送持久的 URL 来共享每个实验,方便地发送给伙伴,或嵌入到在线笔记中

7. 💻 支持自托管: 支持不联网使用,自托管的社区版同样可以查看仪表盘与管理实验

[!IMPORTANT]

收藏项目,你将从 GitHub 上无延迟地接收所有发布通知~ ⭐️

star-us


📃 在线演示

来看看 SwanLab 的在线演示:

ResNet50 猫狗分类 Yolov8-COCO128 目标检测
跟踪一个简单的 ResNet50 模型在猫狗数据集上训练的图像分类任务。 使用 Yolov8 在 COCO128 数据集上进行目标检测任务,跟踪训练超参数和指标。
Qwen2 指令微调 LSTM Google 股票预测
跟踪 Qwen2 大语言模型的指令微调训练,完成简单的指令遵循。 使用简单的 LSTM 模型在 Google 股价数据集上训练,实现对未来股价的预测。

更多案例


🏁 快速开始

1.安装

pip install swanlab

2.登录并获取 API Key

  1. 免费注册账号

  2. 登录账号,在用户设置 > API Key 里复制您的 API Key

  3. 打开终端,输入:

swanlab login

出现提示时,输入您的 API Key,按下回车,完成登陆。

3.将 SwanLab 与你的代码集成

import swanlab

# 初始化一个新的swanlab实验
swanlab.init(
    project="my-first-ml",
    config={'learning-rate': 0.003},
)

# 记录指标
for i in range(10):
    swanlab.log({"loss": i, "acc": i})

大功告成!前往SwanLab查看你的第一个 SwanLab 实验。

MNIST


💻 自托管

自托管社区版支持离线查看 SwanLab 仪表盘。

离线实验跟踪

在 swanlab.init 中设置logirmode这两个参数,即可离线跟踪实验:

...

swanlab.init(
    logdir='./logs',
    mode='local',
)

...

其他部分和云端使用完全一致。

开启离线看板

打开终端,使用下面的指令,开启一个 SwanLab 仪表板:

swanlab watch ./logs

运行完成后,SwanLab 会给你 1 个本地的 URL 链接(默认是http://127.0.0.1:5092

访问该链接,就可以在浏览器用离线看板查看实验了。


🚗 框架集成

将您最喜欢的框架与 SwanLab 结合使用,更多集成

⚡️ PyTorch Lightning
使用`SwanLabLogger`创建示例,并代入`Trainer`的`logger`参数中,即可实现 SwanLab 记录训练指标。 ```python from swanlab.integration.pytorch_lightning import SwanLabLogger import importlib.util import os import pytorch_lightning as pl from torch import nn, optim, utils from torchvision.datasets import MNIST from torchvision.transforms import ToTensor encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3)) decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28)) class LitAutoEncoder(pl.LightningModule): def __init__(self, encoder, decoder): super().__init__() self.encoder = encoder self.decoder = decoder def training_step(self, batch, batch_idx): # training_step defines the train loop. # it is independent of forward x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = nn.functional.mse_loss(x_hat, x) # Logging to SwanLab (if installed) by default self.log("train_loss", loss) return loss def test_step(self, batch, batch_idx): # test_step defines the test loop. # it is independent of forward x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = nn.functional.mse_loss(x_hat, x) # Logging to SwanLab (if installed) by default self.log("test_loss", loss) return loss def configure_optimizers(self): optimizer = optim.Adam(self.parameters(), lr=1e-3) return optimizer # init the autoencoder autoencoder = LitAutoEncoder(encoder, decoder) # setup data dataset = MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()) train_dataset, val_dataset = utils.data.random_split(dataset, [55000, 5000]) test_dataset = MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()) train_loader = utils.data.DataLoader(train_dataset) val_loader = utils.data.DataLoader(val_dataset) test_loader = utils.data.DataLoader(test_dataset) swanlab_logger = SwanLabLogger( project="swanlab_example", experiment_name="example_experiment", cloud=False, ) trainer = pl.Trainer(limit_train_batches=100, max_epochs=5, logger=swanlab_logger) trainer.fit(model=autoencoder, train_dataloaders=train_loader, val_dataloaders=val_loader) trainer.test(dataloaders=test_loader) ```
🤗HuggingFace Transformers
使用`SwanLabCallback`创建示例,并代入`Trainer`的`callbacks`参数中,即可实现 SwanLab 记录训练指标。 ```python import evaluate import numpy as np import swanlab from swanlab.integration.huggingface import SwanLabCallback from datasets import load_dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) dataset = load_dataset("yelp_review_full") tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") tokenized_datasets = dataset.map(tokenize_function, batched=True) small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) metric = evaluate.load("accuracy") model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5) training_args = TrainingArguments( output_dir="test_trainer", report_to="none", num_train_epochs=3, logging_steps=50, ) swanlab_callback = SwanLabCallback(experiment_name="TransformersTest", cloud=False) trainer = Trainer( model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_eval_dataset, compute_metrics=compute_metrics, callbacks=[swanlab_callback], ) trainer.train() ```
MMEngine(MMDetection etc.)
将 SwanLab 专为 MMEngine 设计的`SwanlabVisBackend`集成到 MMEngine 中,即可实现 SwanLab 自动记录训练指标。 在你的 MM 配置文件中,加入下面的代码片段,开始训练即可。 ```python custom_imports = dict(imports=["swanlab.integration.mmengine"], allow_failed_imports=False) vis_backends = [ dict( type="SwanlabVisBackend", save_dir="runs/swanlab", init_kwargs={ "project": "swanlab-mmengine", }, ), ] visualizer = dict( type="Visualizer", vis_backends=vis_backends, ) ```
Ultralytics
将 SwanLab 集成到 Ultralytics 中非常简单,只需要用`add_swanlab_callback`函数即可实现: ```python from ultralytics import YOLO from swanlab.integration.ultralytics import add_swanlab_callback model = YOLO("yolov8n.yaml") model.load() # 添加swanlab回调 add_swanlab_callback(model) model.train( data="./coco.yaml", epochs=50, imgsz=320, ) ```


🆚 与熟悉的工具的比较

Tensorboard vs SwanLab

Weights and Biases vs SwanLab


👥 社区

社区与支持

SwanLab README 徽章

如果你喜欢在工作中使用 SwanLab,请将 SwanLab 徽章添加到你的 README 中:

swanlab

[![swanlab](https://img.shields.io/badge/powered%20by-SwanLab-438440)](https://github.com/swanhubx/swanlab)

在论文中引用 SwanLab

如果您发现 SwanLab 对您的研究之旅有帮助,请考虑以下列格式引用:

@software{Zeyilin_SwanLab_2023,
  author = {Zeyi Lin, Shaohong Chen, Kang Li, Qiushan Jiang, Zirui Cai,  Kaifang Ji and {The SwanLab team}},
  doi = {10.5281/zenodo.11100550},
  license = {Apache-2.0},
  title = {{SwanLab}},
  url = {https://github.com/swanhubx/swanlab},
  year = {2023}
}

为 SwanLab 做出贡献

考虑为 SwanLab 做出贡献吗?首先,请花点时间阅读 贡献指南

同时,我们非常欢迎通过社交媒体、活动和会议的分享来支持 SwanLab,衷心感谢!

下载 Icon

SwanLab-Icon-SVG


Contributors


📃 协议

本仓库遵循 Apache 2.0 License 开源协议