TACC / tacc_stats

TACC Stats is an automated resource-usage monitoring and analysis package.
GNU Lesser General Public License v2.1
42 stars 15 forks source link
hpc metrics performance-analysis rabbitmq xsede

tacc_stats Documentation {#mainpage}

DOI

Developers and Maintainers

Stephen Lien Harrell (mailto:sharrell@tacc.utexas.edu)
Junjie Li (mailto:jli@tacc.utexas.edu)
Sangamithra Goutham (mailto:sgoutham@tacc.utexas.edu)

Developer Emeritus

John Hammond
R. Todd Evans
Bill Barth
Albert Lu

Description

The tacc_stats package provides the tools to monitor resource usage of HPC systems at multiple levels of resolution.

The package is split into an autotools-based monitor subpackage and a Python setuptools-based tacc_stats subpackage. monitor performs the online data collection and transmission in a production environment while tacc_stats performs the data curation and analysis in an offline environment.

Building and installing the tacc_stats-2.3.5-1.el7.x86_64.rpm package with the taccstats.spec file will build and install a systemd service taccstats. This service launches a daemon with an overhead of 3% on a single core when configured to sample at a frequency of 1Hz. It is typically configured to sample at 5 minute intervals, with samples taken at the start and end of every job as well. The TACC Stats daemon, tacc_statsd, is controlled by the taccstats service and sends the data directly to a RabbitMQ server over the administrative ethernet network. RabbitMQ must be installed and running on the server in order for the data to be received.

Installing the tacc_stats module will setup a Django-based web application along with tools for extracting the data from the RabbitMQ server and feeding them into a PostgreSQL database.

Code Access

To get access to the tacc_stats source code clone this repository:

git clone https://github.com/TACC/tacc_stats

Installation

monitor subpackage

First ensure the RabbitMQ library and header file are installed on the build and compute nodes

librabbitmq-devel-0.5.2-1.el6.x86_64

./configure; make; make install will then successfully build the tacc_statsd executable for many systems. If Xeon Phi coprocessors are present on your system they can be monitored with the --enable-mic flag. Additionally the configuration options, --disable-infiniband, --disable-lustre, --disable-hardware will disable infiniband, Lustre Filesystem, and Hardware Counter monitoring which are all enabled by default. Disabling RabbitMQ will result in a legacy build of tacc_statsd that relies on the shared filesystem to transmit data. This mode is not recommended and currently used for testing purposes only. If libraries or header files are not found than add their paths to the include and library paths with the CPPFLAGS and/or LDFLAGS vars as is standard in autoconf based installations.

There will be a configuration file, /etc/taccstats/taccstats.conf, after installation. This file contains the fields

server localhost

queue default

port 5672

freq 600

server should be set to the hostname or IP hosting the RabbitMQ server, queue to the system/cluster name that is being monitored, port to the RabbitMQ port (5672 is default), and freq to the desired sampling frequency in seconds. The file and settings can be reloaded into a running tacc_statsd daemon with a SIGHUP signal.

An RPM can be built for deployment using the taccstats.spec file. The most straightforward approach to build this is to setup your rpmbuild directory then run

rpmbuild -bb taccstats.spec

The taccstats.spec file seds the taccstats.conf file to the correct server and queue. These can be changed by modifying these two lines

sed -i 's/localhost/stats.frontera.tacc.utexas.edu/' src/taccstats.conf

sed -i 's/default/frontera/' src/taccstats.conf

tacc_statsd can be started, stopped, and restarted using systemctl start taccstats, systemctl stop taccstats, and systemctl restart taccstats.

In order to notify tacc_stats of a job beginning, echo the job id into /var/run/TACC_jobid on each node where the job is running. It order to notify it of a job ending echo - into /var/run/TACC_jobid on each node where the job is running. This can be accomplished in the job scheduler prolog and epilog for example.

Job Scheduler Configuration


In order for tacc_stats to correcly label records with JOBIDs it is required that the job scheduler prolog and epilog contain the lines

echo $JOBID > jobid_file

and

echo - > jobid_file

To perform the pickling of this data it is also necessary to generate an accounting file that contains the following information in the following format

JobID|User|Account|Start|End|Submit|Partition|Timelimit|JobName|State|NNodes|ReqCPUS|NodeList

for example,

1837137|sharrell|project140208|2018-08-01T18:18:51|2018-08-02T11:44:51|2018-07-29T08:05:43|normal|1-00:00:00|jobname|COMPLETED|8|104|c420-[024,073],c421-[051-052,063-064,092-093]

If using SLURM the sacct_gen.py script that will be installed with the tacc_stats subpackage may be used. This script generates a file for each date with the name format year-month-day.txt, e.g. 2018-11-01.txt.

tacc_stats subpackage

To install TACC Stats on the machine where data will be processed, analyzed, and the webserver hosted follow these steps:

  1. Download the package and setup the Python3 virtual environment. TACC Stats is Python3 dependent.
    $ virtualenv machinename --system-site-packages
    $ cd machinename; source bin/activate
    $ git clone https://github.com/TACC/tacc_stats

    tacc_stats is a pure Python package. Dependencies should be automatically downloaded and installed when installed via pip. The package must first be configured however in the tacc_stats.ini file.

  2. The initialization file, tacc_stats.ini, controls all the configuration options and has the following content and descriptions
    
    ## Basic configuration options - modify these
    # machine       = unique name of machine/queue
    # server        = database and rmq server hostname
    # data_dir      = where data is stored
    [DEFAULT]
    machine         = ls5
    data_dir        = /hpc/tacc_stats_site/%(machine)s
    server          = tacc-stats02.tacc.utexas.edu

RabbitMQ Configuration

RMQ_SERVER = RMQ server

RMQ_QUEUE = RMQ server

[RMQ] rmq_server = %(server)s rmq_queue = %(machine)s

Configuration for Web Portal Support

[PORTAL] acct_path = %(data_dir)s/accounting archive_dir = %(data_dir)s/archive host_name_ext = %(machine)s.tacc.utexas.edu dbname = %(machine)s_db

Set these paths as needed. The `accounting_path` will contain an accounting file for each date, e.g. `2018-11-01.txt`. The raw stats data will be stored in the `archive_dir` and processed stats data in the TimeScale database `dbname`.  `machine` should match the system name used in the RabbitMQ server `QUEUE` field and is the RabbitMQ `QUEUE` that the monitoring agent sends the data too.  This is the only field that needs to match settings in the `monitor` subpackage. `host_name_ext` is the extension required to each compute node hostname in order to build a FQDN. This will match to directory names created in the `archive_dir`. 
3.  Install `tacc_stats`

$ pip install -e tacc_stats/

4.  Start the RabbitMQ server reader in the background, e.g. 

$ nohup listend.py > /tmp/listend.log

Raw stats files will now be generated in the `archive_dir`.
5.  A PostgreSQL database must be setup on the host.  To do this, after installation of PostgreSQL
and the `tacc_stats` Python module 

$ sudo su - postgres $ psql

CREATE DATABASE machinename_db;

CREATE USER taccstats WITH PASSWORD 'taccstats';

ALTER ROLE taccstats SET client_encoding TO 'utf8';

ALTER ROLE taccstats SET default_transaction_isolation TO 'read committed';

ALTER ROLE taccstats SET timezone TO 'UTC';

ALTER DATABASE machinename_db OWNER TO taccstats;

GRANT ALL PRIVILEGES ON DATABASE machinename_db TO taccstats;

\q


then

$ python manage.py migrate

This will generate a table named `machinename_db` in your database.  

6.  Setup cron jobs to process raw data and ingest into database.  Add the following to your 
cron file

/15 * source /home/sharrell/testing/bin/activate; job_pickles.py; update_db.py > /tmp/ls5_update.log 2>&1

7.  Next configure the Apache server (make sure it is installed and the `mod_wsgi` Apache module is installed)
A sample configuration file, `/etc/httpd/conf.d/ls5.conf`, looks like

LoadModule wsgi_module /stats/stampede2/lib/python3.7/site-packages/mod_wsgi/server/mod_wsgi-py37.cpython-37m-x86_64-linux-gnu.so WSGISocketPrefix run/wsgi

<VirtualHost *:80>

ServerAdmin sharrell@tacc.utexas.edu ServerName stats.webserver.tacc.utexas.edu ServerAlias stats.webserver.tacc.utexas.edu

WSGIDaemonProcess s2-stats python-home=/stats/stampede2 python-path=/stats/stampede2/tacc_stats:/stats/stampede2/lib/python3.7/site-packages user=sharrell WSGIProcessGroup s2-stats WSGIScriptAlias / /tacc_stats/site/tacc_stats_site/wsgi.py process-group=s2-stats WSGIApplicationGroup %{GLOBAL}

<Directory /stats/stampede2/tacc_stats/tacc_stats/site/tacc_stats_site>

Require all granted


8.  Start up Apache 

### Running `job_pickles.py`
`job_pickles.py` can be run manually by:

    $ ./job_pickles.py [start_date] [end_date] [-dir directory] [-jobids id0 id1 ... idn]

where the 4 optional arguments have the following meaning

  - `start_date`     : the start of the date range, e.g. `"2013-09-25"` (default is today)
  - `end_date`       : the end of the date range, e.g. `"2013-09-26"` (default is `start_date`)
  - `-dir`       : the directory to store pickled dictionaries (default is set in tacc_stats.ini)
  - `-jobids`     : individual jobids to pickle (default is all jobs)

No arguments results in all jobs from the previous day getting pickled and stored in the `pickles_dir`
defined in `tacc_stats.ini`. On Stampede argumentless `job_pickles.py` is run every 24 hours as a `cron` job
set-up by the user.

### Pickled data format: generated `job_pickles.py`

Pickled stats data will be placed in the directory specified by
`pickles_dir`.  The pickled data is contained in a nested python
dictionary with the following key layers:

    job       : 1st key Job ID
     host     : 2nd key Host node used by Job ID
      type    : 3rd key TYPE specified in tacc_stats
       device : 4th key device belonging to type

For example, to access Job ID `101`'s stats data on host `c560-901` for
`TYPE` `intel_snb` for device cpu number `0` from within a python script:

    pickle_file = open('101','r')
    jobid = pickle.load(pickle_file)
    pickle_file.close()
    jobid['c560-901']['intel_snb']['0']

The value accessed by this key is a 2D array, with rows corresponding to record times and
columns to specific counters for the device.  To view the names for each counter add

    jobid.get_schema('intel_snb')

or for a short version

    jobid.get_schema('intel_snb').desc

----------------------------------------------------------------------------

## Copyright
(C) 2011 University of Texas at Austin

## License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA