TMElyralab / MusePose

MusePose: a Pose-Driven Image-to-Video Framework for Virtual Human Generation
Other
2.29k stars 167 forks source link

MusePose

MusePose: a Pose-Driven Image-to-Video Framework for Virtual Human Generation.

Zhengyan Tong, Chao Li, Zhaokang Chen, Bin Wu, Wenjiang Zhou (Corresponding Author, benbinwu@tencent.com)

Lyra Lab, Tencent Music Entertainment

github huggingface space (comming soon) Project (comming soon) Technical report (comming soon)

MusePose is an image-to-video generation framework for virtual human under control signal such as pose. The current released model was an implementation of AnimateAnyone by optimizing Moore-AnimateAnyone.

MusePose is the last building block of the Muse opensource serie. Together with MuseV and MuseTalk, we hope the community can join us and march towards the vision where a virtual human can be generated end2end with native ability of full body movement and interaction. Please stay tuned for our next milestone!

We really appreciate AnimateAnyone for their academic paper and Moore-AnimateAnyone for their code base, which have significantly expedited the development of the AIGC community and MusePose.

Update:

  1. We support Comfyui-MusePose now!

Recruitment

Join Lyra Lab, Tencent Music Entertainment!

We are currently seeking AIGC researchers including Internships, New Grads, and Senior (实习、校招、社招).

Please find details in the following two links or contact zkangchen@tencent.com

Overview

MusePose is a diffusion-based and pose-guided virtual human video generation framework.
Our main contributions could be summarized as follows:

  1. The released model can generate dance videos of the human character in a reference image under the given pose sequence. The result quality exceeds almost all current open source models within the same topic.
  2. We release the pose align algorithm so that users could align arbitrary dance videos to arbitrary reference images, which SIGNIFICANTLY improved inference performance and enhanced model usability.
  3. We have fixed several important bugs and made some improvement based on the code of Moore-AnimateAnyone.

Demos

News

Todo:

Getting Started

We provide a detailed tutorial about the installation and the basic usage of MusePose for new users:

Installation

To prepare the Python environment and install additional packages such as opencv, diffusers, mmcv, etc., please follow the steps below:

Build environment

We recommend a python version >=3.10 and cuda version =11.7. Then build environment as follows:

pip install -r requirements.txt

mmlab packages

pip install --no-cache-dir -U openmim 
mim install mmengine 
mim install "mmcv>=2.0.1" 
mim install "mmdet>=3.1.0" 
mim install "mmpose>=1.1.0" 

Download weights

You can download weights manually as follows:

  1. Download our trained weights.

  2. Download the weights of other components:

Finally, these weights should be organized in pretrained_weights as follows:

./pretrained_weights/
|-- MusePose
|   |-- denoising_unet.pth
|   |-- motion_module.pth
|   |-- pose_guider.pth
|   └── reference_unet.pth
|-- dwpose
|   |-- dw-ll_ucoco_384.pth
|   └── yolox_l_8x8_300e_coco.pth
|-- sd-image-variations-diffusers
|   └── unet
|       |-- config.json
|       └── diffusion_pytorch_model.bin
|-- image_encoder
|   |-- config.json
|   └── pytorch_model.bin
└── sd-vae-ft-mse
    |-- config.json
    └── diffusion_pytorch_model.bin

Quickstart

Inference

Preparation

Prepare your referemce images and dance videos in the folder ./assets and organnized as the example:

./assets/
|-- images
|   └── ref.png
└── videos
    └── dance.mp4

Pose Alignment

Get the aligned dwpose of the reference image:

python pose_align.py --imgfn_refer ./assets/images/ref.png --vidfn ./assets/videos/dance.mp4

After this, you can see the pose align results in ./assets/poses, where ./assets/poses/align/img_ref_video_dance.mp4 is the aligned dwpose and the ./assets/poses/align_demo/img_ref_video_dance.mp4 is for debug.

Inferring MusePose

Add the path of the reference image and the aligned dwpose to the test config file ./configs/test_stage_2.yaml as the example:

test_cases:
  "./assets/images/ref.png":
    - "./assets/poses/align/img_ref_video_dance.mp4"

Then, simply run

python test_stage_2.py --config ./configs/test_stage_2.yaml

./configs/test_stage_2.yaml is the path to the inference configuration file.

Finally, you can see the output results in ./output/

Reducing VRAM cost

If you want to reduce the VRAM cost, you could set the width and height for inference. For example,

python test_stage_2.py --config ./configs/test_stage_2.yaml -W 512 -H 512

It will generate the video at 512 x 512 first, and then resize it back to the original size of the pose video.

Currently, it takes 16GB VRAM to run on 512 x 512 x 48 and takes 28GB VRAM to run on 768 x 768 x 48. However, it should be noticed that the inference resolution would affect the final results (especially face region).

Face Enhancement

If you want to enhance the face region to have a better consistency of the face, you could use FaceFusion. You could use the face-swap function to swap the face in the reference image to the generated video.

Training

Acknowledgement

  1. We thank AnimateAnyone for their technical report, and have refer much to Moore-AnimateAnyone and diffusers.
  2. We thank open-source components like AnimateDiff, dwpose, Stable Diffusion, etc..

Thanks for open-sourcing!

Limitations

Citation

@article{musepose,
  title={MusePose: a Pose-Driven Image-to-Video Framework for Virtual Human Generation},
  author={Tong, Zhengyan and Li, Chao and Chen, Zhaokang and Wu, Bin and Zhou, Wenjiang},
  journal={arxiv},
  year={2024}
}

Disclaimer/License

  1. code: The code of MusePose is released under the MIT License. There is no limitation for both academic and commercial usage.
  2. model: The trained model are available for non-commercial research purposes only.
  3. other opensource model: Other open-source models used must comply with their license, such as ft-mse-vae, dwpose, etc..
  4. The testdata are collected from internet, which are available for non-commercial research purposes only.
  5. AIGC: This project strives to impact the domain of AI-driven video generation positively. Users are granted the freedom to create videos using this tool, but they are expected to comply with local laws and utilize it responsibly. The developers do not assume any responsibility for potential misuse by users.