🥉227/3900
model_name | Dataset | mix_da | image_size | loss | optimizer | schduler | data_aug | best_score_loss | best_score | fold0 score |
---|---|---|---|---|---|---|---|---|---|---|
RepVGG-B1g4 | 2019 + 2020 | fmix | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3563 | 0.890660 (13epoch) | 0.890 |
RepVGG-B1g4 | 2020 | mixup | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3519 | 0.8887 | ---- |
resnext50_32x4d | 2019 + 2020 | fmix | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3823 | 0.88743356 (13epoch) | 0.891 |
resnext50_32x4d | 2020 | mixup | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3547 | 0.88995 (20epoch) | ---- |
tf_efficientnet_b4_ns | 2019 + 2020 | fmix | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3377 | 0.888572513287 (6epoch) | ---- |
tf_efficientnet_b4_ns | 2020 | mixup | 512 | CrossEntropy | adamp | ConsAnne | 1 | 0.3346 | 0.89205607 (9epoch) | ---- |
tf_efficientnet_b5_ns | 2019 + 2020 | fmix | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3423 | 0.890280941 (8epoch) | 0.8999 |
tf_efficientnet_b5_ns | 2020 | mixup | 512 | CrossEntropy | adamp | ConsAnne | 1 | 0.3318 | 0.8936915 (6epoch) | --- |
tf_efficientnet_b5_ns | 2020 | mixup | 512 | CrossEntropy | adamp | ConsAnne | 1 | 0.3318 | 0.89252 (5epoch) | ---- |
model_name | image_size | loss | optimizer | schduler | data_aug | best_score_loss | best_score |
---|---|---|---|---|---|---|---|
tf_efficientnet_b4_ns | 512 | FocalCosineLoss | adam | ConsAnne | 1 | 0.1355 | 0.89276 |
tf_efficientnet_b4_ns | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3251 | 0.89462 |
tf_efficientnet_b4_ns | 600 | CrossEntropy | adam | ConsAnne | 1 | 0.3103 | 0.89626 |
tf_efficientnet_b4_ns | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3251 | 0.89462 |
tf_efficientnet_b4_ns | 512 | CrossEntropy | adam | ConsAnne | 2 | 0.3178 | 0.89393 |
tf_efficientnet_b4_ns | 600 | LabelSmmothingLoss | adam | ConsAnne | 1 | 0.3100 | 0.89860 |
tf_efficientnet_b4_ns | 600 | LabelSmmothingLoss | adam | CosineAnnealingLR | 1 | 0.3085 | 0.89579 |
tf_efficientnet_b4_ns | 600 | BiTemperedLogisiticLoss | adam | ConsAnne | 1 | 0.0954 | 0.89533 |
tf_efficientnet_b5_ns | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3103 | 0.89700 |
tf_efficientnet_b5_ns | 600 | CrossEntropy | adam | ConsAnne | 1 | 0.3103 | 0.89603 |
tf_efficientnet_b5_ns | 512 | LabelSmmothingLoss | adam | ConsAnne | 1 | 0.3370 | 0.89860 |
tf_efficientnet_b5_ns | 512 | TaylorCrossEntropy | adam | ConsAnne | 1 | 0.3095 | 0.89766 |
tf_efficientnet_b5_ns | 512 | SymmtricCrossENtropy | adam | ConsAnne | 1 | 0.3574 | 0.89580 |
tf_efficientnet_b6 | 528 | CrossEntropy | adam | ConsAnne | 1 | 0.3407 | 0.89042 |
tf_efficientnet_b6_ns | 528 | CrossEntropy | adam | ConsAnne | 1 | 0.3294 | 0.88902 |
tf_mixnet_s | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3383 | 0.88505 |
vit_base_patch16_38 | 384 | CrossEntropy | adam | ConsAnne | 1 | 0.7168 | 0.73808 |
deit_base_patch_16_224 | 224 | CrossEntropy | adam | ConsAnne | 1 | 0.9590 | 0.6596 |
RepVGG-A1 | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3608 | 0.88879 |
RepVGG-B1g2 | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3555 | 0.89533 (30epoch) |
resnext50_32x4d | 512 | BiTemperedLogisiticLoss | adam | ConsAnne | 1 | 0.1045 | 0.88879 (10epoch) |
resnext50_32x4d | 512 | LabelSmoothingLoss | adam | ConsAnne | 1 | 0.3539 | 0.88949 (10epoch) |
resnext50_32x4d | 512 | CrossEntropy | adam | ConsAnne | 1 | 0.3579 | 0.888318 (9epoch) |
https://albumentations.ai/docs/api_reference/augmentations/transforms/
https://hydra.cc/docs/configure_hydra/workdir/
https://github.com/ecs-vlc/FMix