English | 简体中文
This package provides an implementation of the inference pipeline of tFold-Ab and tFold-Ag.
We also provide:
Any publication that discloses findings arising from using this source code or the model parameters should cite the tFold paper.
Please also refer to the Supplementary Information for a detailed description of the method.
If you have any questions, please contact the tFold team at fandiwu@tencent.com
Shorthand | Dataset | Description |
---|---|---|
ESM-PPI | UniRef50, PDB, PPI, Antibody | General-purpose protein language model, further pre-trained using ESM2 with 650M parameters. Can be used to predict multimer structure directly from individual sequences |
tFold-Ab | SAbDab (before 31 December 2021) | SOTA antibody structure prediction model. MSA-free prediction with ESM-PPI |
tFold-Ag | SAbDab (before 31 December 2021) | SOTA antibody-antigen complex structure prediction model. Can be used for virtual screening of binding antibodies and antibody design |
Clone the package
git clone https://github.com/TencentAI4S/tFold.git
cd tFold
Prepare the environment
Download pre-trained weights under params directory
Download sequence databases for msa searching (only needed for tFold-Ag)
colab_databases_path=your_path # Specify your path, requires more space
sh scripts/setup_database.sh $colab_databases_path
ln -s $colab_databases_path colab_databases
Test set we construct in our paper
Human germline antibody frameworks library to guide antibody generation
# antibody
python projects/tfold_ab/predict.py --pid_fpath=examples/prot_ids.ab.txt --fas_dpath=examples/fasta.files --pdb_dpath=examples/pdb.files.ab
# nanobody
python projects/tfold_ab/predict.py --pid_fpath=examples/prot_ids.nano.txt --fas_dpath=examples/fasta.files --pdb_dpath=examples/pdb.files.nano
# antibody-antigen complex
python projects/tfold_ag/predict.py --pid_fpath=examples/prot_ids.abag.txt --fas_dpath=examples/fasta.files --msa_fpath=examples/msa.files/8df5_R.a3m --pdb_dpath=examples/pdb.files.abag
# nanobody-antigen complex
python projects/tfold_ag/predict.py --pid_fpath=examples/prot_ids.nanoag.txt --fas_dpath=examples/fasta.files --msa_fpath=examples/msa.files/7sai_A.a3m --pdb_dpath=examples/pdb.files.nano
python projects/tfold_ag/predict.py --pid_fpath=examples/prot_ids.abag.txt --fas_dpath=examples/fasta.files --msa_fpath=examples/msa.files/8df5_R.a3m --pdb_dpath=examples/pdb.files.abag
python projects/tfold_ag/gen_msa.py --fasta_file=examples/fasta.files/PD-1.fasta --output_dir=examples/PD-1
# generate inter-chain feature (ppi)
python projects/tfold_ag/gen_icf_feat.py --pid_fpath=examples/prot_ids.abag.txt --fas_dpath=examples/fasta.files --pdb_dpath=examples/pdb.files.native --icf_dpath=examples/icf.files.ppi --icf_type=ppi
# antibody-antigen complex prediction with inter-chain feature
python projects/tfold_ag/predict.py --pid_fpath=examples/prot_ids.abag.txt --fas_dpath=examples/fasta.files --msa_fpath=examples/msa.files/8df5_R.a3m --pdb_dpath=examples/pdb.files.abag --icf_dpath=examples/icf.files.ppi --model_ver=ppi
python projects/tfold_ag/gen_icf_feat.py --pid_fpath=examples/prot_ids.abag.txt --fas_dpath=examples/fasta.files --pdb_dpath=examples/pdb.files.native --icf_dpath=examples/icf.files.ppi --icf_type=ppi
python projects/tfold_ag/predict.py --pid_fpath=examples/prot_ids.design.txt --fas_dpath=examples/fasta.files --msa_fpath=examples/msa.files/7urf_A.a3m --pdb_dpath=examples/pdb.files.design
If you use tFold in your research, please cite our paper
@article{wu2024fast,
title={Fast and accurate modeling and design of antibody-antigen complex using tFold},
author={Wu, Fandi and Zhao, Yu and Wu, Jiaxiang and Jiang, Biaobin and He, Bing and Huang, Longkai and Qin, Chenchen and Yang, Fan and Huang, Ningqiao and Xiao, Yang and others},
journal={bioRxiv},
pages={2024--02},
year={2024},
publisher={Cold Spring Harbor Laboratory}
}
and old version of tFold-Ab
@article{wu2022tfold,
title={tFold-ab: fast and accurate antibody structure prediction without sequence homologs},
author={Wu, Jiaxiang and Wu, Fandi and Jiang, Biaobin and Liu, Wei and Zhao, Peilin},
journal={bioRxiv},
pages={2022--11},
year={2022},
publisher={Cold Spring Harbor Laboratory}
}