:triangular_flag_on_post: Updates
:white_check_mark: 2022.10.16 Clean research codes & Update VQFR-v2. In this version, we emphasize the restoration quality of the texture branch and balance fidelity with user control.
:white_check_mark: Support enhancing non-face regions (background) with Real-ESRGAN.
:white_check_mark: The Colab Demo of VQFR is created.
:white_check_mark: The training/inference codes and pretrained models in paper are released.
This paper aims at investigating the potential and limitation of Vector-Quantized (VQ) dictionary for blind face restoration.
We propose a new framework VQFR – incoporating the Vector-Quantized Dictionary and the Parallel Decoder.
Compare with previous arts, VQFR produces more realistic facial details and keep the comparable fidelity.
[Paper] [Project Page] [Video] [B站] [Poster] [Slides]
Yuchao Gu, Xintao Wang, Liangbin Xie, Chao Dong, Gen Li, Ying Shan, Ming-Ming Cheng
Nankai University; Tencent ARC Lab; Tencent Online Video; Shanghai AI Laboratory;
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
Clone repo
git clone https://github.com/TencentARC/VQFR.git
cd VQFR
Install dependent packages
# Build VQFR with extension
pip install -r requirements.txt
VQFR_EXT=True python setup.py develop
# Following packages are required to run demo.py
# Install basicsr - https://github.com/xinntao/BasicSR
pip install basicsr
# Install facexlib - https://github.com/xinntao/facexlib
# We use face detection and face restoration helper in the facexlib package
pip install facexlib
# If you want to enhance the background (non-face) regions with Real-ESRGAN,
# you also need to install the realesrgan package
pip install realesrgan
Download pre-trained VQFRv1/v2 models [Google Drive].
Inference
# for real-world image
python demo.py -i inputs/whole_imgs -o results -v 2.0 -s 2 -f 0.1
# for cropped face
python demo.py -i inputs/cropped_faces/ -o results -v 2.0 -s 1 -f 0.1 --aligned
Usage: python demo.py -i inputs/whole_imgs -o results -v 2.0 -s 2 -f 0.1 [options]...
-h show this help
-i input Input image or folder. Default: inputs/whole_imgs
-o output Output folder. Default: results
-v version VQFR model version. Option: 1.0. Default: 1.0
-f fidelity_ratio VQFRv2 model supports user control fidelity ratio, range from [0,1]. 0 for the best quality and 1 for the best fidelity. Default: 0
-s upscale The final upsampling scale of the image. Default: 2
-bg_upsampler background upsampler. Default: realesrgan
-bg_tile Tile size for background sampler, 0 for no tile during testing. Default: 400
-suffix Suffix of the restored faces
-only_center_face Only restore the center face
-aligned Input are aligned faces
-ext Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto
We provide the training codes for VQFR (used in our paper).
Codebook Training
Pre-train VQ codebook on FFHQ datasets.
python -m torch.distributed.launch --nproc_per_node=8 --master_port=2022 vqfr/train.py -opt options/train/VQGAN/train_vqgan_v1_B16_800K.yml --launcher pytorch
Or download our pretrained VQ codebook Google Drive and put them in the experiments/pretrained_models
folder.
Restoration Training
Modify the configuration file options/train/VQFR/train_vqfr_v1_B16_200K.yml
accordingly.
Training
python -m torch.distributed.launch --nproc_per_node=8 --master_port=2022 vqfr/train.py -opt options/train/VQFR/train_vqfr_v1_B16_200K.yml --launcher pytorch
We evaluate VQFR on one synthetic dataset CelebA-Test, and three real-world datasets LFW-Test, CelebChild and Webphoto-Test. For reproduce our evaluation results, you need to perform the following steps:
Name | Datasets | Short Description | Download | VQFR Results |
---|---|---|---|---|
Testing Datasets | CelebA-Test(LQ/HQ) | 3000 (LQ, HQ) synthetic images for testing | Google Drive | Google Drive |
LFW-Test(LQ) | 1711 real-world images for testing | |||
CelebChild(LQ) | 180 real-world images for testing | |||
Webphoto-Test(LQ) | 469 real-world images for testing |
# LPIPS
pip install lpips
# Deg.
cd metric_paper/
git clone https://github.com/ronghuaiyang/arcface-pytorch.git
mv arcface-pytorch/ arcface/
rm arcface/config/__init__.py arcface/models/__init__.py
# put pretrained models of different metrics to "experiments/pretrained_models/metric_weights/"
Metrics | Pretrained Weights | Download |
---|---|---|
FID | inception_FFHQ_512.pth | Google Drive |
Deg | resnet18_110.pth | |
LMD | alignment_WFLW_4HG.pth |
Specify the dataset_lq/dataset_gt to the testing dataset root in test_vqfr_v1.yml.
Then run the following command:
python vqfr/test.py -opt options/test/VQFR/test_vqfr_v1.yml
Run evaluation:
# LPIPS|PSNR/SSIM|LMD|Deg.
python metric_paper/[calculate_lpips.py|calculate_psnr_ssim.py|calculate_landmark_distance.py|calculate_cos_dist.py]
-restored_folder folder_to_results -gt_folder folder_to_gt
# FID|NIQE
python metric_paper/[calculate_fid_folder.py|calculate_niqe.py] -restored_folder folder_to_results
VQFR is released under Apache License Version 2.0.
Thanks to the following open-source projects:
@inproceedings{gu2022vqfr,
title={VQFR: Blind Face Restoration with Vector-Quantized Dictionary and Parallel Decoder},
author={Gu, Yuchao and Wang, Xintao and Xie, Liangbin and Dong, Chao and Li, Gen and Shan, Ying and Cheng, Ming-Ming},
year={2022},
booktitle={ECCV}
}
If you have any question, please email yuchaogu9710@gmail.com
.