TengdaHan / MemDPC

[ECCV'20 Spotlight] Memory-augmented Dense Predictive Coding for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.
Apache License 2.0
164 stars 20 forks source link

Memory-augmented Dense Predictive Coding for Video Representation Learning

This repository contains the implementation of Memory-augmented Dense Predictive Coding (MemDPC).

Links: [arXiv] [PDF] [Video] [Project page]

arch

News

Preparation

This repository is implemented in PyTorch 1.2, but newer version should also work. Additionally, it needs cv2, joblib, tqdm, tensorboardX.

For the dataset, please follow the instructions here.

Self-supervised training (MemDPC)

Evaluation

Finetune entire network for action classification on UCF101: arch

MemDPC pretrained weights

Citation

If you find the repo useful for your research, please consider citing our paper:

@InProceedings{Han20,
  author       = "Tengda Han and Weidi Xie and Andrew Zisserman",
  title        = "Memory-augmented Dense Predictive Coding for Video Representation Learning",
  booktitle    = "European Conference on Computer Vision",
  year         = "2020",
}

For any questions, welcome to create an issue or contact Tengda Han (htd@robots.ox.ac.uk).