Issue: Abudance of algorithms and difficult to find a working code
Issue: Installaing different deep learning pipelines is an error-prone task
Issue: Setting up different algorithms for your custom data requires a lot of effort in changing the existing codes
Issue: Difficulty to trace out which hyperparameters to change for tuning the algorithm
Issue: Deployment requires knowledge of base libraries and codes
Issue: Looking for hands-on tutorials for computer vision
Wheat detection in field | Detection in underwater imagery | Trash Detection |
Object detection in bad lighting | Tiger detection in wild | Person detection in infrared imagery |
Road Segmentation in satellite imagery | Ultrasound nerve segmentation |
Face Detection | Pose Estimation | Activity Recognition |
Object Re-identification | Scene Text Localization | Object Tracking |
A) Training Engine
B) Inference Engine
- Train models on custom dataset with low code syntax
- Pretrained examples on variety of datasets
- Useful to train your own detector
S.No. | Algorithm Type | Algorithm | Model variations | Installation | Example Notebooks | Code | Credits | Original Usage License | Functional Docs |
---|---|---|---|---|---|---|---|---|---|
1 | Object Detection | GluonCV Finetune | 5 | LINK | LINK | LINK | LINK | Apache 2.0 | LINK |
2 | Object Detection | Tensorflow Object Detection 1.0 | 22 | LINK | LINK | LINK | LINK | Apache 2.0 | In Development |
3 | Object Detection | Tensorflow Object Detection 2.0 | 26 | LINK | LINK | LINK | LINK | Apache 2.0 | In Development |
4 | Object Detection | Pytorch Efficient-Det 1 | 1 | LINK | LINK | LINK | LINK | MIT | LINK |
5 | Object Detection | Pytorch Efficient-Det 2 | 8 | LINK | LINK | LINK | LINK | LGPL 3.0 | In Development |
6 | Object Detection | TorchVision Finetune | 1 | LINK | LINK | LINK | LINK | BSD-3-Clause | LINK |
7 | Object Detection | Mx-RCNN | 3 | LINK | LINK | LINK | LINK | Mixed | LINK |
8 | Object Detection | Pytorch-Retinanet | 5 | LINK | LINK | LINK | LINK | Apache 2.0 | LINK |
9 | Object Detection | CornerNet Lite | 2 | LINK | LINK | LINK | LINK | BSD-3-Clause | LINK |
10 | Object Detection | YoloV3 | 7 | LINK | LINK | LINK | LINK | GPL 3.0 | LINK |
11 | Object Detection | RFBNet | 3 | LINK | LINK | LINK | LINK | MIT | LINK |
12 | Object Detection | Slim-Yolo-V3 | 1 | LINK | LINK | LINK | LINK | License Not Available | In Development |
13 | Object Detection | Pytorch SSD | 3 | LINK | LINK | LINK | LINK | MIT | In Development |
14 | Object Detection | Pytorch-Peleenet | 1 | LINK | LINK | LINK | LINK | License Not Available | In Development |
15 | Object Detection | MM-Detection | 36 | LINK | LINK | LINK | LINK | Apache 2.0 | In Development |
16 | Image Segmentation | Segmentation Models | 4 | LINK | LINK | LINK | LINK | MIT | In Development |
17 | Pytorch Retinaface | Face Detection | 2 | LINK | LINK | LINK | LINK | MIT | In Development |
18 | Action Recognition | MM-Action2 | 8 | LINK | LINK | LINK | LINK | Apache 2.0 | In Development |
19 | Text Localization | Pytorch-TextSnake | 1 | LINK | LINK | LINK | LINK | MIT | In Development |
20 | Image Segmentation | SOLO - V1/V2 | 14 | LINK | LINK | LINK | LINK | Academic non-commercial usage | In Development |
21 | Image Segmentation | Mask-RCNN (MMDetect) | 8 | LINK | LINK | LINK | LINK | Apache 2.0 | In Development |
22 | Pose Estimation | GluonCV Pose | 11 | LINK | LINK | LINK | LINK | Apache 2.0 |
- Infer already trained models on COCO/VOC/Open-Images on your custom data
- Useful to analyse computation time metrics
S.No. | Algorithm Type | Algorithm | Model Valriations | Model Trained On | Installation | Example Notebook | Code | Credits | Functional Docs |
---|---|---|---|---|---|---|---|---|---|
1 | Object Detection | GluonCV Finetune | 4 | COCO | Pascal VOC | LINK | LINK | LINK | LINK |
2 | Object Detection | Pytorch EfficientDet | 8 | COCO | LINK | LINK | LINK | LINK | In Development |
3 | Object Detection | Detecto-RS | 2 | COCO | LINK | LINK | LINK | LINK | In Development |
Tessellate Imaging - https://www.tessellateimaging.com/
Check out Monk AI - (https://github.com/Tessellate-Imaging/monk_v1)
Monk features
- low-code
- unified wrapper over major deep learning framework - keras, pytorch, gluoncv
- syntax invariant wrapper
Enables developers
- to create, manage and version control deep learning experiments
- to compare experiments across training metrics
- to quickly find best hyper-parameters
To contribute to Monk AI or Monk Object Detection repository raise an issue in the git-repo or dm us on linkedin
Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.