The-Learning-And-Vision-Atelier-LAVA / BUFFER

[CVPR 2023] BUFFER: Balancing Accuracy, Efficiency, and Generalizability in Point Cloud Registration
MIT License
71 stars 8 forks source link

License CC BY-NC-SA 4.0

BUFFER: Balancing Accuracy, Efficiency, and Generalizability in Point Cloud Registration (CVPR 2023)

This is the official repository of BUFFER, a point cloud registration method for balancing accuracy, efficiency, and generalizability. For technical details, please refer to:

BUFFER: Balancing Accuracy, Efficiency, and Generalizability in Point Cloud Registration
Sheng Ao, Qingyong Hu, Hanyun Wang, Kai Xu, Yulan Guo.

[Paper] [Video] [Project page]

(1) Overview

fig1

(2) Setup

This code has been tested with Python 3.8, Pytorch 1.9.1, CUDA 11.1 on Ubuntu 20.04.

export CUDA_HOME=/your/cuda/home/directory/ pip install "git+git://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib" pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl pip install ninja kornia einops easydict tensorboard tensorboardX pip install nibabel -i http://pypi.douban.com/simple --trusted-host pypi.douban.com cd cpp_wrappers && sh compile_wrappers.sh && cd .. git clone https://github.com/KinglittleQ/torch-batch-svd.git && cd torch-batch-svd && python setup.py install && cd .. && sudo rm -rf torch-batch-svd/


### (3) 3DMatch
Following [Predator](https://github.com/prs-eth/OverlapPredator.git), we provide the processed 3DMatch training set (subsampled fragments with voxel size of 1.5cm and their ground truth transformation matrices). 

Download the processed dataset from [Google Drive](https://drive.google.com/drive/folders/1tWVV4u_YablYmPta8fmHLY-JN4kZWh8R?usp=sharing) and put the folder into `data`. 
Then the structure should be as follows:

- `data`
    - `ThreeDMatch`
        - `train`
            - `7-scenes-chess`
            - ...
            - `3DMatch_train_overlap.pkl`
            - `train_3dmatch.txt`
            - `val_3dmatch.txt`
        - `test`
            - `3DLoMatch`
            - `3DMatch`

**Training**

Training BUFFER on the 3DMatch dataset:

cd ./ThreeDMatch python train.py

**Testing**

Evaluate the performance of the trained models on the 3DMatch dataset:

cd ./ThreeDMatch python test.py

To evaluate the performance of BUFFER on the 3DLoMatch dataset, you only need to modify the `_C.data.dataset = '3DMatch'` in `config.py` to `_C.data.dataset = '3DLoMatch'` and performs:

python test.py


### (4) KITTI
Download the data from the [KITTI Odometry website](http://www.cvlibs.net/datasets/kitti/eval_odometry.php) into `data`. 
Then the structure is as follows:

- `data`
    - `KITTI`
        - `dataset`
            - `pose`
                - `00.txt`
                - ...
            - `sequences`
                - `00`
                - ...

**Training**

Training BUFFER on the KITTI dataset:

cd ./KITTI python train.py


**Testing**

Evaluate the performance of the trained models on the KITTI dataset:

cd ./KITTI python test.py


### (5) ETH

The test set can be downloaded from [here](https://share.phys.ethz.ch/~gsg/3DSmoothNet/data/ETH.rar), and put the folder into `data`, then the structure is as follows:

- `data`
    - `ETH`
        - `gazebo_summer`
        - `gazebo_winter`
        - `wood_autmn`
        - `wood_summer`

### (6) Generalizing to Unseen Datasets 

**3DMatch to ETH**

Generalization from 3DMatch dataset to ETH dataset:

cd ./generalization/ThreeD2ETH python test.py


**3DMatch to KITTI**

Generalization from 3DMatch dataset to KITTI dataset:

cd ./generalization/ThreeD2KITTI python test.py


**KITTI to 3DMatch**

Generalization from KITTI dataset to 3DMatch dataset:

cd ./generalization/KITTI2ThreeD python test.py


**KITTI to ETH**

Generalization from KITTI dataset to ETH dataset:

cd ./generalization/KITTI2ETH python test.py



## Acknowledgement

In this project, we use (parts of) the implementations of the following works:

* [Vector Neurons](https://github.com/FlyingGiraffe/vnn)
* [D3Feat](https://github.com/XuyangBai/D3Feat.pytorch)
* [PointDSC](https://github.com/XuyangBai/PointDSC)
* [SpinNet](https://github.com/QingyongHu/SpinNet)
* [GeoTransformer](https://github.com/qinzheng93/GeoTransformer)
* [RoReg](https://github.com/HpWang-whu/RoReg)

### Citation
If you find our work useful in your research, please consider citing:

    @inproceedings{ao2023buffer,
      title={BUFFER: Balancing Accuracy, Efficiency, and Generalizability in Point Cloud Registration},
      author={Ao, Sheng and Hu, Qingyong and Wang, Hanyun and Xu, Kai and Guo, Yulan},
      booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
      pages={1255--1264},
      year={2023}
    }

### Updates
* 07/06/2023: The code is released!
* 28/02/2023: This paper has been accepted by CVPR 2023!

## Related Repos
1. [RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds](https://github.com/QingyongHu/RandLA-Net) ![GitHub stars](https://img.shields.io/github/stars/QingyongHu/RandLA-Net.svg?style=flat&label=Star)
2. [SoTA-Point-Cloud: Deep Learning for 3D Point Clouds: A Survey](https://github.com/QingyongHu/SoTA-Point-Cloud) ![GitHub stars](https://img.shields.io/github/stars/QingyongHu/SoTA-Point-Cloud.svg?style=flat&label=Star)
3. [3D-BoNet: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds](https://github.com/Yang7879/3D-BoNet) ![GitHub stars](https://img.shields.io/github/stars/Yang7879/3D-BoNet.svg?style=flat&label=Star)
4. [SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds](https://github.com/QingyongHu/SensatUrban) ![GitHub stars](https://img.shields.io/github/stars/QingyongHu/SensatUrban.svg?style=flat&label=Star)
5. [SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration](https://github.com/QingyongHu/SpinNet)![GitHub stars](https://img.shields.io/github/stars/QingyongHu/SpinNet.svg?style=flat&label=Star)