Open TheTekton337 opened 9 months ago
Define Integration Layer Interfaces
SymbolicReasoningEngine Interface:
Neural Network Engine Interface:
Example Trait for SymbolicReasoningEngine:
trait SymbolicIntegration {
fn send_symbolic_data(&self, data: &SymbolicData);
fn receive_neural_output(&self, output: &NeuralOutput);
}
Example Trait for Neural Network Engine:
trait NeuralIntegration {
fn send_neural_data(&self, data: &NeuralData);
fn receive_symbolic_output(&self, output: &SymbolicOutput);
}
Update SymbolicReasoningEngine for Integration
Example Implementation in SymbolicReasoningEngine:
struct SymbolicReasoningEngine {
// ... existing fields
// Integration Layer reference
integration_layer: Box<dyn SymbolicIntegration>,
}
impl SymbolicReasoningEngine {
pub fn new(integration_layer: Box<dyn SymbolicIntegration>) -> Self {
SymbolicReasoningEngine {
// ... initialize other fields
integration_layer,
}
}
pub fn process_neural_output(&self, output: &NeuralOutput) {
// Process neural network output and update the reasoning engine state
// ...
}
}
Implement Integration Layer
Create Integration Layer Package:
IntegrationLayer
, responsible for implementing the interfaces defined in Step 1.Implement Integration Traits:
IntegrationLayer
package, implement the traits defined for integration with both the SymbolicReasoningEngine and the Neural Network Engine.Example Implementation in IntegrationLayer Package:
struct IntegrationLayer;
impl SymbolicIntegration for IntegrationLayer {
fn send_symbolic_data(&self, data: &SymbolicData) {
// Send symbolic data to the Neural Network Engine
// ...
}
fn receive_neural_output(&self, output: &NeuralOutput) {
// Receive neural network output and forward it to the SymbolicReasoningEngine
// ...
}
}
impl NeuralIntegration for IntegrationLayer {
fn send_neural_data(&self, data: &NeuralData) {
// Send neural data to the SymbolicReasoningEngine
// ...
}
fn receive_symbolic_output(&self, output: &SymbolicOutput) {
// Receive symbolic output and forward it to the Neural Network Engine
// ...
}
}
Create Neural Network Engine
Example NeuralNetworkEngine Package:
struct NeuralNetworkEngine {
// ... other fields
// Integration Layer reference
integration_layer: Box<dyn NeuralIntegration>,
}
impl NeuralNetworkEngine {
pub fn new(integration_layer: Box<dyn NeuralIntegration>) -> Self {
NeuralNetworkEngine {
// ... initialize other fields
integration_layer,
}
}
pub fn process_symbolic_output(&self, output: &SymbolicOutput) {
// Process symbolic output and update the neural network engine state
// ...
}
}
Create NSCR Framework Package
Example NSCR Framework Package:
struct NSCRFramework {
symbolic_reasoning_engine: SymbolicReasoningEngine,
neural_network_engine: NeuralNetworkEngine,
integration_layer: IntegrationLayer,
}
impl NSCRFramework {
pub fn new() -> Self {
// Initialize instances of SymbolicReasoningEngine, NeuralNetworkEngine, and IntegrationLayer
let integration_layer = Box
::new(IntegrationLayer);
let symbolic_reasoning_engine = SymbolicReasoningEngine::new(integration_layer.clone());
let neural_network_engine = NeuralNetworkEngine::new(integration_layer);
NSCRFramework {
symbolic_reasoning_engine,
neural_network_engine,
integration_layer,
}
}
}
Integration Layer Plan for NSCR Framework
The NSCR (Neuro-Symbolic Cognitive Reasoning) framework involves integrating the SymbolicReasoningEngine with a neural network engine and an integration engine.
Plan Summary:
The NSCR framework aims to seamlessly integrate symbolic reasoning with neural network capabilities through the Integration Engine. By defining common data representations, protocols, and feedback mechanisms, this framework will allow for a combination of symbolic and neural reasoning to tackle complex cognitive tasks.
Components:
SymbolicReasoningEngine (SRE):
Neural Network Engine (NNE):
Integration Engine (IE):
Plan:
1. Define a Common Data Representation:
2. Data Exchange Protocols:
3. SRE Changes:
4. IE Implementation:
5. Integration Logic:
6. Feedback Mechanism:
7. Testing and Validation:
8. Documentation:
9. Example Use Cases: