TiledCUDA is a highly efficient kernel template library designed to elevate CUDA C’s level of abstraction for processing tiles. It is designed to be:
TiledCUDA adopts a hardware bottom-up approach by building kernels around the core concept of the BaseTile. The shapes of these BaseTiles align with TensorCore's instruction shape and encapsulate hardware-dependent performance parameters to optimally utilize TensorCore's capabilities. Serving as building blocks, these BaseTiles are then combined to construct larger tiles in both temporal and spatial dimensions, enabling users to process larger tiles composed of BaseTiles for their applications.
TiledCUDA implements GlobalTile
, SharedTile
and RegTile
to customize the shape and layout of tiles located in the GPU's three memory hierarchies. Here's an example of a simple GEMM kernel written in TiledCUDA (the complete example can be found in this directory):
(To simplify the demonstration, this example only involves two memory levels: global memory and registers. TiledCUDA also applies a similar concept to shared memory.)
template <typename InType, typename AccType, typename IteratorA, typename RegA,
typename LoaderA, typename IteratorB, typename RegB, typename LoaderB,
typename GlobalC, typename RegC, typename CStorer>
__global__ void simple_gemm(const InType* dA, const InType* dB, AccType* dC) {
IteratorA gAs(dA);
RegA rA;
LoaderA loader_a;
IteratorB gBs(dB);
RegB rB;
LoaderB loader_b;
RegC acc;
for (int k = 0; k < IteratorA::sc1; ++k) {
loader_a(gAs(k), rA);
loader_b(gBs(k), rB);
__syncthreads();
gemm(rA, rB, acc);
}
__syncthreads();
GlobalC gC(dC);
CStorer storer_c;
storer_c(acc, gC);
}
The TileIterator
is used to divide the GlobalTile
into smaller sub-tiles and iterate over them. Various warp reuse methods are provided to support efficient repeated loading of data by warps within a thread block. TiledCUDA provides efficient loading and storing methods that transfer data between memory hierarchies by utilizing specialized hardware-accelerated instructions. Tiles of data are then cooperatively loaded into the RegTile
, which is stored in each thread's local register file.
Once the data is loaded into a thread's local register file, gemm
performs matrix multiplication using TensorCore's warp-level matrix multiply-and-accumulate (wmma) instruction on the BaseTile
s. The specialized data distribution required by TensorCore is automatically maintained by TiledCUDA's RegTile
layout.
After the gemm
operation is completed, data in the RegTile
is cooperatively stored back from registers to global memory using the RegToGlobalStorer
.
Here is how to declare the Tile
at each level of memory, use TileIterator
to chunk large tiles into sub-tiles, and declare loaders and storers to transfer tiles between memory hierarchies.
using WarpLayout = RowMajor<2, 2>;
// operand A
using GlobalA = GlobalTile<InType, RowMajor<128, 256>>;
using IteratorA = TileIterator<GlobalA, TileShape<128, 32>>;
using RegA = RegTile<BaseTileRowMajor<__half>, RowMajor<8, 8>>;
using ALoader = GlobalToRegLoader<RegA, WarpLayout, kRowReuseCont>;
// operand B
using GlobalB = GlobalTile<InType, ColMajor<256, 64>>;
using IteratorB = TileIterator<GlobalB, TileShape<32, 64>>;
using RegB = RegTile<BaseTileColMajor<__half>, ColMajor<8, 4>>;
using BLoader = GlobalToRegLoader<RegB, WarpLayout, kColReuseCont>;
// output C
using GlobalC = GlobalTile<AccType, RowMajor<128, 64>>;
using RegC = RegTile<BaseTileRowMajor<float>, RowMajor<8, 8>>;
using CStorer = RegToGlobalStorer<GlobalC, RegC, WarpLayout>;
git clone git@github.com:TiledTensor/TiledCUDA.git
cd TiledCUDA && git submodule update --init --recursive
TiledCUDA requires a C++20 host compiler, CUDA 12.0 or later, and GCC version 10.0 or higher to support C++20 features.
make unit_test UNIT_TEST=test_scatter_nd.py
./scripts/unittests/python.sh
make unit_test_cpp CPP_UT=test_copy
make unit_test_cpps