TimChou-ntu / GSNeRF

[CVPR 2024] GSNeRF: Generalizable Semantic Neural Radiance Fields with Enhanced 3D Scene Understanding
11 stars 0 forks source link

GSNeRF: Enhancing 3D Scene Understanding with Generalizable Semantic Neural Radiance Fields

Zi-Ting Chou, Sheng-Yu Huang, I-Jieh Liu, Yu-Chiang Wang
Project Page | Paper

This repository contains a official PyTorch Lightning implementation of our paper, GSNeRF (CVPR 2024).

Installation

Tested on NVIDIA GeForce RTX 3090 GPUs with cuda 11.7, PyTorch 2.0.1 and PyTorch Lightning 2.0.4

To install the dependencies, in addition to PyTorch, run:

git clone --recursive https://github.com/TimChou-ntu/GSNeRF.git
conda create -n gsnerf python=3.9
conda activate gsnerf
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu117
cd GSNeRF
pip install -r requirements.txt

Evaluation and Training

Following Semantic Nerf and Semantic-Ray, we conduct experiment on ScanNet and Replica respectively.

Download scannet from here and set its path as scannet_path in the scannet.txt file.

Download Replica from here and set its path as replica_path in the replica.txt file. (Thanks Semantic Nerf for rendering 2D image and semantic map.)

Organize the data in the following structure:

├── data
│   ├── scannet
│   │   ├── scene0000_00
│   │   │   ├── color
│   │   │   │   ├── 0.jpg
│   │   │   │   ├── ...
│   │   │   ├── depth
│   │   │   │   ├── 0.png
│   │   │   │   ├── ...
│   │   │   ├── label-filt
│   │   │   │   ├── 0.png
│   │   │   │   ├── ...
│   │   │   ├── pose
│   │   │   │   ├── 0.txt
│   │   │   │   ├── ...
│   │   │   ├── intrinsic
│   │   │   │   ├── extrinsic_color.txt
│   │   │   │   ├── intrinsic_color.txt
│   │   │   │   ├── ...
│   │   │   ├── ...
│   │   ├── ...
│   │   ├── scannetv2-labels.combined.tsv
|   |
│   ├── replica
│   │   ├── office_0
│   │   │   ├── Sequence_1
│   │   │   │   ├── depth
|   │   │   │   │   ├── depth_0.png
|   │   │   │   │   ├── ...
│   │   │   │   ├── rgb
|   │   │   │   │   ├── rgb_0.png
|   │   │   │   │   ├── ...
│   │   │   │   ├── semantic_class
|   │   │   │   │   ├── semantic_class_0.png
|   │   │   │   │   ├── ...
│   │   │   │   ├── traj_w_c.txt
│   │   ├── ...
│   │   ├── semantic_info

ScanNet (real-world indoor scene) Dataset

For training a generalizable model, set the number of source views to 8 (nb_views = 8) in the scannet.txt file and run the following command:

python train.py --config configs/scannet.txt --segmentation --logger wandb --target_depth_estimation

For evaluation on a novel scene, run the following command: (replace [ckpt path] with your trained checkpoint path.)

python train.py --config configs/scannet.txt --segmentation --logger none --target_depth_estimation --ckpt_path [ckpt path] --eval

Replica (Synthetic indoor scene) Dataset

For training a generalizable model, set the number of source views to 8 (nb_views = 8) in the replica.txt file and run the following command:

python train.py --config configs/replica.txt --segmentation --logger wandb --target_depth_estimation

For evaluation on a novel scene, run the following command: (replace [ckpt path] with your trained checkpoint path.)

python train.py --config configs/replica.txt --segmentation --logger none --target_depth_estimation --ckpt_path [ckpt path] --eval

Self-supervised depth model

Simply add --self_supervised_depth_loss at the end of command.

Contact

You can contact the author through email: A88551212@gmail.com

Citing

If you find our work useful, please consider citing:

@inproceedings{Chou2024gsnerf,
      author    = {Zi‑Ting Chou* and Sheng‑Yu Huang* and I‑Jieh Liu and Yu‑Chiang Frank Wang},
      title     = {GSNeRF: Generalizable Semantic Neural Radiance Fields with Enhanced 3D Scene Understanding},
      booktitle = CVPR,
      year      = {2024},
      arxiv     = {2403.03608},
    }

Acknowledgement

Some portions of the code were derived from GeoNeRF.

Additionally, the well-structured codebases of nerf_pl, nesf, and RC-MVSNet were extremely helpful during the experiment. Shout out to them for their contributions.