A PyTorch implementation of Fast-SCNN: Fast Semantic Segmentation Network from the paper by Rudra PK Poudel, Stephan Liwicki.
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
./datasets/citys
dir.train.py
as a flag or manually change them.
python train.py --model fast_scnn --dataset citys
To evaluate a trained network:
python eval.py
Running a demo:
python demo.py --model fast_scnn --input-pic './png/berlin_000000_000019_leftImg8bit.png'
Method | Dataset | crop_size | mIoU | pixAcc |
---|---|---|---|---|
Fast-SCNN(paper) | cityscapes | |||
Fast-SCNN(ours) | cityscapes | 768 | 54.84% | 92.37% |
Note: The result based on crop_size=768, which is different with paper.
(a) test image (b) ground truth (c) predicted result