UkoeHB / monero

Monero: the secure, private, untraceable cryptocurrency
https://getmonero.org
Other
7 stars 4 forks source link

Monero

Copyright (c) 2014-2023, The Monero Project Portions Copyright (c) 2012-2013 The Cryptonote developers.

Table of Contents

Development resources

Vulnerability response

Research

The Monero Research Lab is an open forum where the community coordinates research into Monero cryptography, protocols, fungibility, analysis, and more. We welcome collaboration and contributions from outside researchers! Because not all Lab work and publications are distributed as traditional preprints or articles, they may be easy to miss if you are conducting literature reviews for your own Monero research. You are encouraged to get in touch with the Monero research community if you have questions, wish to collaborate, or would like guidance to help avoid unnecessarily duplicating earlier or known work.

The Monero research community is available on IRC in #monero-research-lab on Libera, which is also accessible via Matrix.

Announcements

Translations

The CLI wallet is available in different languages. If you want to help translate it, see our self-hosted localization platform, Weblate, on translate.getmonero.org. Every translation must be uploaded on the platform, pull requests directly editing the code in this repository will be closed. If you need help with Weblate, you can find a guide with screenshots here.  

If you need help/support/info about translations, contact the localization workgroup. You can find the complete list of contacts on the repository of the workgroup: monero-translations.

Coverage

Type Status
Coverity Coverity Status
OSS Fuzz Fuzzing Status
Coveralls Coveralls Status
License License

Introduction

Monero is a private, secure, untraceable, decentralised digital currency. You are your bank, you control your funds, and nobody can trace your transfers unless you allow them to do so.

Privacy: Monero uses a cryptographically sound system to allow you to send and receive funds without your transactions being easily revealed on the blockchain (the ledger of transactions that everyone has). This ensures that your purchases, receipts, and all transfers remain private by default.

Security: Using the power of a distributed peer-to-peer consensus network, every transaction on the network is cryptographically secured. Individual wallets have a 25-word mnemonic seed that is only displayed once and can be written down to backup the wallet. Wallet files should be encrypted with a strong passphrase to ensure they are useless if ever stolen.

Untraceability: By taking advantage of ring signatures, a special property of a certain type of cryptography, Monero is able to ensure that transactions are not only untraceable but have an optional measure of ambiguity that ensures that transactions cannot easily be tied back to an individual user or computer.

Decentralization: The utility of Monero depends on its decentralised peer-to-peer consensus network - anyone should be able to run the monero software, validate the integrity of the blockchain, and participate in all aspects of the monero network using consumer-grade commodity hardware. Decentralization of the monero network is maintained by software development that minimizes the costs of running the monero software and inhibits the proliferation of specialized, non-commodity hardware.

About this project

This is the core implementation of Monero. It is open source and completely free to use without restrictions, except for those specified in the license agreement below. There are no restrictions on anyone creating an alternative implementation of Monero that uses the protocol and network in a compatible manner.

As with many development projects, the repository on GitHub is considered to be the "staging" area for the latest changes. Before changes are merged into that branch on the main repository, they are tested by individual developers in their own branches, submitted as a pull request, and then subsequently tested by contributors who focus on testing and code reviews. That having been said, the repository should be carefully considered before using it in a production environment, unless there is a patch in the repository for a particular show-stopping issue you are experiencing. It is generally a better idea to use a tagged release for stability.

Anyone is welcome to contribute to Monero's codebase! If you have a fix or code change, feel free to submit it as a pull request directly to the "master" branch. In cases where the change is relatively small or does not affect other parts of the codebase, it may be merged in immediately by any one of the collaborators. On the other hand, if the change is particularly large or complex, it is expected that it will be discussed at length either well in advance of the pull request being submitted, or even directly on the pull request.

Supporting the project

Monero is a 100% community-sponsored endeavor. If you want to join our efforts, the easiest thing you can do is support the project financially. Both Monero and Bitcoin donations can be made to donate.getmonero.org if using a client that supports the OpenAlias standard. Alternatively, you can send XMR to the Monero donation address via the donate command (type help in the command-line wallet for details).

The Monero donation address is:
888tNkZrPN6JsEgekjMnABU4TBzc2Dt29EPAvkRxbANsAnjyPbb3iQ1YBRk1UXcdRsiKc9dhwMVgN5S9cQUiyoogDavup3H
Viewkey:
f359631075708155cc3d92a32b75a7d02a5dcf27756707b47a2b31b21c389501
Base address for restoring with address and viewkey: 44AFFq5kSiGBoZ4NMDwYtN18obc8AemS33DBLWs3H7otXft3XjrpDtQGv7SqSsaBYBb98uNbr2VBBEt7f2wfn3RVGQBEP3A

The Bitcoin donation address is:
1KTexdemPdxSBcG55heUuTjDRYqbC5ZL8H

Core development funding and/or some supporting services are also graciously provided by sponsors:

There are also several mining pools that kindly donate a portion of their fees, a list of them can be found on our Bitcointalk post.

License

See LICENSE.

Contributing

If you want to help out, see CONTRIBUTING for a set of guidelines.

Scheduled software/network upgrades

Monero uses a scheduled software/network upgrade (hard fork) mechanism to implement new features into the Monero software and network. This means that users of Monero (end users and service providers) should run current versions and upgrade their software when new releases are available. Software upgrades occur when new features are developed and implemented in the codebase. Network upgrades occur in tandem with software upgrades that modify the consensus rules of the Monero network. The required software for network upgrades will be available prior to the scheduled network upgrade date. Please check the repository prior to this date for the proper Monero software version. Below is the historical schedule and the projected schedule for the next upgrade.

Dates are provided in the format YYYY-MM-DD. The "Minimum" is the software version that follows the new consensus rules. The "Recommended" version may include bug fixes and other new features that do not affect the consensus rules.

Software upgrade block height Date Fork version Minimum Monero version Recommended Monero version Details
1009827 2016-03-22 v2 v0.9.4 v0.9.4 Allow only >= ringsize 3, blocktime = 120 seconds, fee-free blocksize 60 kb
1141317 2016-09-21 v3 v0.9.4 v0.10.0 Splits coinbase into denominations
1220516 2017-01-05 v4 v0.10.1 v0.10.2.1 Allow normal and RingCT transactions
1288616 2017-04-15 v5 v0.10.3.0 v0.10.3.1 Adjusted minimum blocksize and fee algorithm
1400000 2017-09-16 v6 v0.11.0.0 v0.11.0.0 Allow only RingCT transactions, allow only >= ringsize 5
1546000 2018-04-06 v7 v0.12.0.0 v0.12.3.0 Cryptonight variant 1, ringsize >= 7, sorted inputs
1685555 2018-10-18 v8 v0.13.0.0 v0.13.0.4 max transaction size at half the penalty free block size, bulletproofs enabled, cryptonight variant 2, fixed ringsize 11
1686275 2018-10-19 v9 v0.13.0.0 v0.13.0.4 bulletproofs required
1788000 2019-03-09 v10 v0.14.0.0 v0.14.1.2 New PoW based on Cryptonight-R, new block weight algorithm, slightly more efficient RingCT format
1788720 2019-03-10 v11 v0.14.0.0 v0.14.1.2 forbid old RingCT transaction format
1978433 2019-11-30 v12 v0.15.0.0 v0.16.0.0 New PoW based on RandomX, only allow >= 2 outputs, change to the block median used to calculate penalty, v1 coinbases are forbidden, rct sigs in coinbase forbidden, 10 block lock time for incoming outputs
2210000 2020-10-17 v13 v0.17.0.0 v0.17.3.2 New CLSAG transaction format
2210720 2020-10-18 v14 v0.17.1.1 v0.17.3.2 forbid old MLSAG transaction format
2688888 2022-08-13 v15 v0.18.0.0 v0.18.1.2 ringsize = 16, bulletproofs+, view tags, adjusted dynamic block weight algorithm
2689608 2022-08-14 v16 v0.18.0.0 v0.18.1.2 forbid old v14 transaction format
XXXXXXX XXX-XX-XX XXX vX.XX.X.X vX.XX.X.X XXX

X's indicate that these details have not been determined as of commit date.

* indicates estimate as of commit date

Release staging schedule and protocol

Approximately three months prior to a scheduled software upgrade, a branch from master will be created with the new release version tag. Pull requests that address bugs should then be made to both master and the new release branch. Pull requests that require extensive review and testing (generally, optimizations and new features) should not be made to the release branch.

Compiling Monero from source

Dependencies

The following table summarizes the tools and libraries required to build. A few of the libraries are also included in this repository (marked as "Vendored"). By default, the build uses the library installed on the system and ignores the vendored sources. However, if no library is found installed on the system, then the vendored source will be built and used. The vendored sources are also used for statically-linked builds because distribution packages often include only shared library binaries (.so) but not static library archives (.a).

Dep Min. version Vendored Debian/Ubuntu pkg Arch pkg Void pkg Fedora pkg Optional Purpose
GCC 5 NO build-essential base-devel base-devel gcc NO
CMake 3.5 NO cmake cmake cmake cmake NO
pkg-config any NO pkg-config base-devel base-devel pkgconf NO
Boost 1.58 NO libboost-all-dev boost boost-devel boost-devel NO C++ libraries
OpenSSL basically any NO libssl-dev openssl openssl-devel openssl-devel NO sha256 sum
libzmq 4.2.0 NO libzmq3-dev zeromq zeromq-devel zeromq-devel NO ZeroMQ library
OpenPGM ? NO libpgm-dev libpgm openpgm-devel NO For ZeroMQ
libnorm[2] ? NO libnorm-dev YES For ZeroMQ
libunbound 1.4.16 NO libunbound-dev unbound unbound-devel unbound-devel NO DNS resolver
libsodium ? NO libsodium-dev libsodium libsodium-devel libsodium-devel NO cryptography
libunwind any NO libunwind8-dev libunwind libunwind-devel libunwind-devel YES Stack traces
liblzma any NO liblzma-dev xz liblzma-devel xz-devel YES For libunwind
libreadline 6.3.0 NO libreadline6-dev readline readline-devel readline-devel YES Input editing
expat 1.1 NO libexpat1-dev expat expat-devel expat-devel YES XML parsing
GTest 1.5 YES libgtest-dev[1] gtest gtest-devel gtest-devel YES Test suite
ccache any NO ccache ccache ccache ccache YES Compil. cache
Doxygen any NO doxygen doxygen doxygen doxygen YES Documentation
Graphviz any NO graphviz graphviz graphviz graphviz YES Documentation
lrelease ? NO qttools5-dev-tools qt5-tools qt5-tools qt5-linguist YES Translations
libhidapi ? NO libhidapi-dev hidapi hidapi-devel hidapi-devel YES Hardware wallet
libusb ? NO libusb-1.0-0-dev libusb libusb-devel libusbx-devel YES Hardware wallet
libprotobuf ? NO libprotobuf-dev protobuf protobuf-devel protobuf-devel YES Hardware wallet
protoc ? NO protobuf-compiler protobuf protobuf protobuf-compiler YES Hardware wallet
libudev ? NO libudev-dev systemd eudev-libudev-devel systemd-devel YES Hardware wallet

[1] On Debian/Ubuntu libgtest-dev only includes sources and headers. You must build the library binary manually. This can be done with the following command sudo apt-get install libgtest-dev && cd /usr/src/gtest && sudo cmake . && sudo make then:

[2] libnorm-dev is needed if your zmq library was built with libnorm, and not needed otherwise

Install all dependencies at once on Debian/Ubuntu:

sudo apt update && sudo apt install build-essential cmake pkg-config libssl-dev libzmq3-dev libunbound-dev libsodium-dev libunwind8-dev liblzma-dev libreadline6-dev libexpat1-dev libpgm-dev qttools5-dev-tools libhidapi-dev libusb-1.0-0-dev libprotobuf-dev protobuf-compiler libudev-dev libboost-chrono-dev libboost-date-time-dev libboost-filesystem-dev libboost-locale-dev libboost-program-options-dev libboost-regex-dev libboost-serialization-dev libboost-system-dev libboost-thread-dev python3 ccache doxygen graphviz

Install all dependencies at once on Arch:

sudo pacman -Syu --needed base-devel cmake boost openssl zeromq libpgm unbound libsodium libunwind xz readline expat gtest python3 ccache doxygen graphviz qt5-tools hidapi libusb protobuf systemd

Install all dependencies at once on Fedora:

sudo dnf install gcc gcc-c++ cmake pkgconf boost-devel openssl-devel zeromq-devel openpgm-devel unbound-devel libsodium-devel libunwind-devel xz-devel readline-devel expat-devel gtest-devel ccache doxygen graphviz qt5-linguist hidapi-devel libusbx-devel protobuf-devel protobuf-compiler systemd-devel

Install all dependencies at once on openSUSE:

sudo zypper ref && sudo zypper in cppzmq-devel libboost_chrono-devel libboost_date_time-devel libboost_filesystem-devel libboost_locale-devel libboost_program_options-devel libboost_regex-devel libboost_serialization-devel libboost_system-devel libboost_thread-devel libexpat-devel libminiupnpc-devel libsodium-devel libunwind-devel unbound-devel cmake doxygen ccache fdupes gcc-c++ libevent-devel libopenssl-devel pkgconf-pkg-config readline-devel xz-devel libqt5-qttools-devel patterns-devel-C-C++-devel_C_C++

Install all dependencies at once on macOS with the provided Brewfile:

brew update && brew bundle --file=contrib/brew/Brewfile

FreeBSD 12.1 one-liner required to build dependencies:

pkg install git gmake cmake pkgconf boost-libs libzmq4 libsodium unbound

Cloning the repository

Clone recursively to pull-in needed submodule(s):

git clone --recursive https://github.com/monero-project/monero

If you already have a repo cloned, initialize and update:

cd monero && git submodule init && git submodule update

Note: If there are submodule differences between branches, you may need to use git submodule sync && git submodule update after changing branches to build successfully.

Build instructions

Monero uses the CMake build system and a top-level Makefile that invokes cmake commands as needed.

On Linux and macOS

Dependencies need to be built with -fPIC. Static libraries usually aren't, so you may have to build them yourself with -fPIC. Refer to their documentation for how to build them.

On the Raspberry Pi

Tested on a Raspberry Pi Zero with a clean install of minimal Raspbian Stretch (2017-09-07 or later) from https://www.raspberrypi.org/downloads/raspbian/. If you are using Raspian Jessie, please see note in the following section.

Note for Raspbian Jessie users:

If you are using the older Raspbian Jessie image, compiling Monero is a bit more complicated. The version of Boost available in the Debian Jessie repositories is too old to use with Monero, and thus you must compile a newer version yourself. The following explains the extra steps and has been tested on a Raspberry Pi 2 with a clean install of minimal Raspbian Jessie.

On Windows:

Binaries for Windows are built on Windows using the MinGW toolchain within MSYS2 environment. The MSYS2 environment emulates a POSIX system. The toolchain runs within the environment and cross-compiles binaries that can run outside of the environment as a regular Windows application.

Preparing the build environment

Cloning

Building

On FreeBSD:

The project can be built from scratch by following instructions for Linux above(but use gmake instead of make). If you are running Monero in a jail, you need to add sysvsem="new" to your jail configuration, otherwise lmdb will throw the error message: Failed to open lmdb environment: Function not implemented.

Monero is also available as a port or package as monero-cli.

On OpenBSD:

You will need to add a few packages to your system. pkg_add cmake gmake zeromq libiconv boost libunbound.

The doxygen and graphviz packages are optional and require the xbase set. Running the test suite also requires py3-requests package.

Build monero: gmake

Note: you may encounter the following error when compiling the latest version of Monero as a normal user:

LLVM ERROR: out of memory
c++: error: unable to execute command: Abort trap (core dumped)

Then you need to increase the data ulimit size to 2GB and try again: ulimit -d 2000000

On NetBSD:

Check that the dependencies are present: pkg_info -c libexecinfo boost-headers boost-libs protobuf readline libusb1 zeromq git-base pkgconf gmake cmake | more, and install any that are reported missing, using pkg_add or from your pkgsrc tree. Readline is optional but worth having.

Third-party dependencies are usually under /usr/pkg/, but if you have a custom setup, adjust the "/usr/pkg" (below) accordingly.

Clone the monero repository recursively and checkout the most recent release as described above. Then build monero: gmake BOOST_ROOT=/usr/pkg LDFLAGS="-Wl,-R/usr/pkg/lib" release. The resulting executables can be found in build/NetBSD/[Release version]/Release/bin/.

On Solaris:

The default Solaris linker can't be used, you have to install GNU ld, then run cmake manually with the path to your copy of GNU ld:

mkdir -p build/release
cd build/release
cmake -DCMAKE_LINKER=/path/to/ld -D CMAKE_BUILD_TYPE=Release ../..
cd ../..

Then you can run make as usual.

Building portable statically linked binaries

By default, in either dynamically or statically linked builds, binaries target the specific host processor on which the build happens and are not portable to other processors. Portable binaries can be built using the following targets:

Cross Compiling

You can also cross-compile static binaries on Linux for Windows and macOS with the depends system.

The required packages are the names for each toolchain on apt. Depending on your distro, they may have different names. The depends system has been tested on Ubuntu 18.04 and 20.04.

Using depends might also be easier to compile Monero on Windows than using MSYS. Activate Windows Subsystem for Linux (WSL) with a distro (for example Ubuntu), install the apt build-essentials and follow the depends steps as depicted above.

The produced binaries still link libc dynamically. If the binary is compiled on a current distribution, it might not run on an older distribution with an older installation of libc. Passing -DBACKCOMPAT=ON to cmake will make sure that the binary will run on systems having at least libc version 2.17.

Gitian builds

See contrib/gitian/README.md.

Installing Monero from a package

DISCLAIMER: These packages are not part of this repository or maintained by this project's contributors, and as such, do not go through the same review process to ensure their trustworthiness and security.

Packages are available for

Packaging for your favorite distribution would be a welcome contribution!

Running monerod

The build places the binary in bin/ sub-directory within the build directory from which cmake was invoked (repository root by default). To run in the foreground:

./bin/monerod

To list all available options, run ./bin/monerod --help. Options can be specified either on the command line or in a configuration file passed by the --config-file argument. To specify an option in the configuration file, add a line with the syntax argumentname=value, where argumentname is the name of the argument without the leading dashes, for example, log-level=1.

To run in background:

./bin/monerod --log-file monerod.log --detach

To run as a systemd service, copy monerod.service to /etc/systemd/system/ and monerod.conf to /etc/. The example service assumes that the user monero exists and its home is the data directory specified in the example config.

If you're on Mac, you may need to add the --max-concurrency 1 option to monero-wallet-cli, and possibly monerod, if you get crashes refreshing.

Internationalization

See README.i18n.md.

Using Tor

There is a new, still experimental, integration with Tor. The feature allows connecting over IPv4 and Tor simultaneously - IPv4 is used for relaying blocks and relaying transactions received by peers whereas Tor is used solely for relaying transactions received over local RPC. This provides privacy and better protection against surrounding node (sybil) attacks.

While Monero isn't made to integrate with Tor, it can be used wrapped with torsocks, by setting the following configuration parameters and environment variables:

Example command line to start monerod through Tor:

DNS_PUBLIC=tcp torsocks monerod --p2p-bind-ip 127.0.0.1 --no-igd

A helper script is in contrib/tor/monero-over-tor.sh. It assumes Tor is installed already, and runs Tor and Monero with the right configuration.

Using Tor on Tails

TAILS ships with a very restrictive set of firewall rules. Therefore, you need to add a rule to allow this connection too, in addition to telling torsocks to allow inbound connections. Full example:

sudo iptables -I OUTPUT 2 -p tcp -d 127.0.0.1 -m tcp --dport 18081 -j ACCEPT
DNS_PUBLIC=tcp torsocks ./monerod --p2p-bind-ip 127.0.0.1 --no-igd --rpc-bind-ip 127.0.0.1 \
    --data-dir /home/amnesia/Persistent/your/directory/to/the/blockchain

Pruning

As of April 2022, the full Monero blockchain file is about 130 GB. One can store a pruned blockchain, which is about 45 GB. A pruned blockchain can only serve part of the historical chain data to other peers, but is otherwise identical in functionality to the full blockchain. To use a pruned blockchain, it is best to start the initial sync with --prune-blockchain. However, it is also possible to prune an existing blockchain using the monero-blockchain-prune tool or using the --prune-blockchain monerod option with an existing chain. If an existing chain exists, pruning will temporarily require disk space to store both the full and pruned blockchains.

For more detailed information see the 'Pruning' entry in the Moneropedia

Debugging

This section contains general instructions for debugging failed installs or problems encountered with Monero. First, ensure you are running the latest version built from the GitHub repo.

Obtaining stack traces and core dumps on Unix systems

We generally use the tool gdb (GNU debugger) to provide stack trace functionality, and ulimit to provide core dumps in builds which crash or segfault.

Run the build.

Once it stalls, enter the following command:

gdb /path/to/monerod `pidof monerod`

Type thread apply all bt within gdb in order to obtain the stack trace

Enter ulimit -c unlimited on the command line to enable unlimited filesizes for core dumps

Enter echo core | sudo tee /proc/sys/kernel/core_pattern to stop cores from being hijacked by other tools

Run the build.

When it terminates with an output along the lines of "Segmentation fault (core dumped)", there should be a core dump file in the same directory as monerod. It may be named just core, or core.xxxx with numbers appended.

You can now analyse this core dump with gdb as follows:

gdb /path/to/monerod /path/to/dumpfile`

Print the stack trace with bt

coredumpctl -1 gdb

To run Monero within gdb:

Type gdb /path/to/monerod

Pass command-line options with --args followed by the relevant arguments

Type run to run monerod

Analysing memory corruption

There are two tools available:

ASAN

Configure Monero with the -D SANITIZE=ON cmake flag, eg:

cd build/debug && cmake -D SANITIZE=ON -D CMAKE_BUILD_TYPE=Debug ../..

You can then run the monero tools normally. Performance will typically halve.

valgrind

Install valgrind and run as valgrind /path/to/monerod. It will be very slow.

LMDB

Instructions for debugging suspected blockchain corruption as per @HYC

There is an mdb_stat command in the LMDB source that can print statistics about the database but it's not routinely built. This can be built with the following command:

cd ~/monero/external/db_drivers/liblmdb && make

The output of mdb_stat -ea <path to blockchain dir> will indicate inconsistencies in the blocks, block_heights and block_info table.

The output of mdb_dump -s blocks <path to blockchain dir> and mdb_dump -s block_info <path to blockchain dir> is useful for indicating whether blocks and block_info contain the same keys.

These records are dumped as hex data, where the first line is the key and the second line is the data.

Known Issues

Protocols

Socket-based

Because of the nature of the socket-based protocols that drive monero, certain protocol weaknesses are somewhat unavoidable at this time. While these weaknesses can theoretically be fully mitigated, the effort required (the means) may not justify the ends. As such, please consider taking the following precautions if you are a monero node operator:

Blockchain-based

Certain blockchain "features" can be considered "bugs" if misused correctly. Consequently, please consider the following: