This is a python wrapper of the epiworld c++
library, an ABM simulation
engine. This is possible using the
pybind11
library (which
rocks!).
The epiworld
module is already
<a href="https://github.com/UofUEpiBio/epiworldR"
target="_blank">implemented in R.
pip install ./epiworldpy
You can find API documentation on the API page.
Here we show how to create a SEIR
object and add terms to it. We will
use the following data:
# Loading the module
import epiworldpy as epiworld
# Create a SEIR model (susceptible, exposed, infectious, recovered), representing COVID-19.
covid19 = epiworld.ModelSEIRCONN(
name = 'covid-19',
n = 10000,
prevalence = .01,
contact_rate = 2.0,
transmission_rate = .1,
incubation_days = 7.0,
recovery_rate = 0.14
)
# Taking a look
covid19.print(False)
________________________________________________________________________________
________________________________________________________________________________
SIMULATION STUDY
Name of the model : Susceptible-Exposed-Infected-Removed (SEIR) (connected)
Population size : 10000
Agents' data : (none)
Number of entities : 0
Days (duration) : 0 (of 0)
Number of viruses : 1
Last run elapsed t : -
Rewiring : off
Global events:
- Update infected individuals (runs daily)
Virus(es):
- covid-19
Tool(s):
(none)
Model parameters:
- Avg. Incubation days : 7.0000
- Contact rate : 2.0000
- Prob. Recovery : 0.1400
- Prob. Transmission : 0.1000
<epiworldpy._core.ModelSEIRCONN at 0x10b9099f0>
Let’s run it and to see what we get:
# Run for 100 days with a seed of 223.
covid19.run(100, 223)
# Print an overview.
covid19.print(False)
_________________________________________________________________________
Running the model...
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| done.
done.
________________________________________________________________________________
________________________________________________________________________________
SIMULATION STUDY
Name of the model : Susceptible-Exposed-Infected-Removed (SEIR) (connected)
Population size : 10000
Agents' data : (none)
Number of entities : 0
Days (duration) : 100 (of 100)
Number of viruses : 1
Last run elapsed t : 22.00ms
Last run speed : 43.64 million agents x day / second
Rewiring : off
Global events:
- Update infected individuals (runs daily)
Virus(es):
- covid-19
Tool(s):
(none)
Model parameters:
- Avg. Incubation days : 7.0000
- Contact rate : 2.0000
- Prob. Recovery : 0.1400
- Prob. Transmission : 0.1000
Distribution of the population at time 100:
- (0) Susceptible : 9900 -> 7275
- (1) Exposed : 100 -> 269
- (2) Infected : 0 -> 292
- (3) Recovered : 0 -> 2164
Transition Probabilities:
- Susceptible 1.00 0.00 0.00 0.00
- Exposed 0.00 0.85 0.15 0.00
- Infected 0.00 0.00 0.86 0.14
- Recovered 0.00 0.00 0.00 1.00
<epiworldpy._core.ModelSEIRCONN at 0x10b9099f0>
We can now visualize the model’s compartments:
import numpy as np
import matplotlib.pyplot as plt
# Get the data from the database
history = covid19.get_db().get_hist_total()
# Extract unique states and dates
unique_states = np.unique(history['states'])
unique_dates = np.unique(history['dates'])
# Remove some data that will mess with scaling
unique_states = np.delete(unique_states, np.where(unique_states == 'Susceptible'))
# Initialize a dictionary to store time series data for each state
time_series_data = {state: [] for state in unique_states}
# Populate the time series data for each state
for state in unique_states:
for date in unique_dates:
# Get the count for the current state and date
mask = (history['states'] == state) & (history['dates'] == date)
count = history['counts'][mask][0]
time_series_data[state].append(count)
# Start the plotting!
plt.figure(figsize=(10, 6))
for state in unique_states:
plt.plot(unique_dates, time_series_data[state], label=state)
plt.xlabel('Day')
plt.ylabel('Count')
plt.title('COVID-19 SEIR Model Data')
plt.legend()
plt.grid(True)
plt.show()
<img src="README_files/figure-markdown_strict/series-visualization-output-1.png" id="series-visualization" />
We can get the effective reproductive number, over time, too:
reproductive_data = covid19.get_db().get_reproductive_number()
# Start the plotting!
plt.figure(figsize=(10, 6))
for virus_id, virus_data in enumerate(reproductive_data):
average_rts = list()
for date_data in virus_data:
if not date_data:
continue
keys_array = np.array(list(date_data.values()), dtype=np.float64)
average_rts.append(np.mean(keys_array))
plt.plot(range(0, len(virus_data)-1), average_rts, label=f"Virus {virus_id}")
plt.xlabel('Date')
plt.ylabel('Effective Reproductive Rate')
plt.title('COVID-19 SEIR Model Effective Reproductive Rate')
plt.legend()
plt.grid(True)
plt.show()
<img src="README_files/figure-markdown_strict/rt-visualization-output-1.png" id="rt-visualization" />
Let’s do the same for generation time:
from collections import defaultdict
generation_time = covid19.get_db().get_generation_time()
agents = generation_time['agents']
viruses = generation_time['viruses']
times = generation_time['times']
gentimes = generation_time['gentimes']
# Data formatting
unique_viruses = np.unique(viruses)
data = defaultdict(lambda: defaultdict(list))
for agent, virus, time, gentime in zip(agents, viruses, times, gentimes):
data[virus][time].append(gentime)
average_data = {virus: {} for virus in unique_viruses}
for virus, time_dict in data.items():
for time, gentime_list in time_dict.items():
average_data[virus][time] = np.mean(gentime_list)
# Plotting
plt.figure(figsize=(10, 6))
for virus, time_dict in average_data.items():
times = sorted(time_dict.keys())
gentimes = [time_dict[time] for time in times]
plt.plot(times, gentimes, label=f'Virus {virus}')
plt.xlabel('Date')
plt.ylabel('Generation Time')
plt.title('COVID-19 SEIR Model Generation Time')
plt.legend()
plt.grid(True)
plt.show()
<img src="README_files/figure-markdown_strict/gentime-visualization-output-1.png" id="gentime-visualization" />
Epiworld records agent-agent interactions, and we can graph those too. In the below example, we only track all cases stemming from a specific index case, despite the model having a prevalence of 0.01.
import networkx as nx
from matplotlib.animation import FuncAnimation
transmissions = covid19.get_db().get_transmissions()
start = transmissions['source_exposure_dates']
end = transmissions['dates']
source = transmissions['sources']
target = transmissions['targets']
days = max(end)
graph = nx.Graph()
fig, ax = plt.subplots(figsize=(6,4))
# Animation function
to_track = { source[0] }
def update(frame):
ax.clear()
agents_involved_today = set()
agents_relationships_we_care_about = []
# Get only the agents involved in the current frame.
for i in range(len(start)):
if start[i] <= frame <= end[i]:
agents_involved_today.add((source[i], target[i]))
# Get only today's agents who have some connection to agents
# we've seen before.
for agent in agents_involved_today:
if agent[0] in to_track or agent[1] in to_track:
to_track.add(agent[0])
to_track.add(agent[1])
graph.add_edge(agent[0], agent[1])
# Lay and space them out.
pos = nx.kamada_kawai_layout(graph)
options = {
"with_labels": True,
"node_size": 300,
"font_size": 6,
"node_color": "white",
"edgecolors": "white",
"linewidths": 1,
"width": 1,
}
# Graph!
nx.draw_networkx(graph, pos, **options)
ax.set_title(f"COVID-19 SEIR Model Agent Contact (Day {frame})")
ani = FuncAnimation(fig, update, frames=int(days/3), interval=200, repeat=False)
plt.show()