We introduce PhoWhisper in five versions for Vietnamese automatic speech recognition. PhoWhisper's robustness is achieved through fine-tuning the multilingual Whisper on an 844-hour dataset that encompasses diverse Vietnamese accents. Our experimental study demonstrates state-of-the-art performances of PhoWhisper on benchmark Vietnamese ASR datasets. Please cite our PhoWhisper paper when it is used to help produce published results or is incorporated into other software:
@inproceedings{PhoWhisper,
title = {{PhoWhisper: Automatic Speech Recognition for Vietnamese}},
author = {Thanh-Thien Le and Linh The Nguyen and Dat Quoc Nguyen},
booktitle = {Proceedings of the ICLR 2024 Tiny Papers track},
year = {2024}
}
Model | #paras | CMV–Vi | VIVOS | VLSP 2020 Task-1 | VLSP 2020 Task-2 |
---|---|---|---|---|---|
vinai/PhoWhisper-tiny |
39M | 19.05 | 10.41 | 20.74 | 49.85 |
vinai/PhoWhisper-base |
74M | 16.19 | 8.46 | 19.70 | 43.01 |
vinai/PhoWhisper-small |
244M | 11.08 | 6.33 | 15.93 | 32.96 |
vinai/PhoWhisper-medium |
769M | 8.27 | 4.97 | 14.12 | 26.85 |
vinai/PhoWhisper-large |
1.55B | 8.14 | 4.67 | 13.75 | 26.68 |
<!--wav2vec2-base-vietnamese-250h |
95M | 102.04 | 10.83 | 21.02 | 50.35 |
wav2vec2-base-vi-vlsp2020 |
95M | 103.71 | 9.90 | 16.82 | 44.91 |
wav2vec2-large-vi-vlsp2020 |
317M | 101.41 | 8.61 | 15.18 | 36.75--> |
from transformers import pipeline
transcriber = pipeline("automatic-speech-recognition", model="vinai/PhoWhisper-small")
output = transcriber(path_to_audio_with_sampling_rate_16kHz)['text']