Code for C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection.
New: Pytorch version of C-MIL is avalable at here. Thanks for the contribution of shenyunhang.
Install the dependencies
cd ./C-MIL
export DIR=$(pwd)
luarocks install hdf5 matio protobuf rapidjson loadcaffe xml
cd $DIR/libs/functions
sh install.sh
cd $DIR/layers
luarocks make
Download dataset, proposals and ImageNet pre-trained model
Download VOC2007 from: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
Download proposals from: https://dl.dropboxusercontent.com/s/orrt7o6bp6ae0tc/selective_search_data.tgz
Download VGGF from: http://www.robots.ox.ac.uk/~vgg/software/deep_eval/releases/bvlc/VGG_CNN_F.caffemodel https://gist.githubusercontent.com/ksimonyan/a32c9063ec8e1118221a/raw/6a3b8af023bae65669a4ceccd7331a5e7767aa4e/VGG_CNN_F_deploy.prototxt
mkdir $DIR/data
mkdir $DIR/output
The data folder has the following structure:
$C-MIL/data/datasets/VOCdevkit_2007/
$C-MIL/data/datasets/VOCdevkit_2007/VOCcode
$C-MIL/data/datasets/VOCdevkit_2007/VOC2007
$C-MIL/data/datasets/VOCdevkit_2007/...
$C-MIL/data/datasets/proposals/
$C-MIL/data/models/
$C-MIL/data/results/
Train, test and evaluate
cd $DIR
# train
th train_cmil.lua 0 SSW
# test
th test_cmil.lua 0 SSW
# evaluate
th detection_mAP.lua 0 SSW output/path/to/scorefiles/score_test_epoch20.h5 2
Acknowledgements will be added later.