The first multimodal medical AI Agent incorporating a wide spectrum of tools to handle various medical tasks across different modalities seamlessly.
[Paper, EMNLP 2024 (Findings)] [Demo (NOTE: This is a temporary link. Please follow [Build Web UI and Server] to build your own server. )]
Binxu Li, Tiankai Yan, Yuanting Pan, Jie Luo, Ruiyang Ji, Jiayuan Ding, Zhe Xu, Shilong Liu, Haoyu Dong, Zihao Lin, Yixin Wang*
Task | Tool | Data Source | Imaging Modality |
---|---|---|---|
VQA | LLaVA-Med | PMC article 60K-IM |
MRI, CT, X-ray, Histology, Gross |
Classification | BiomedCLIP | PMC article 60K-IM |
MRI, CT, X-ray, Histology, Gross |
Grounding | Grounding DINO | WORD, etc.* |
MRI, CT, X-ray, Histology |
Segmentation with bounding-box prompts (Segmentation) | MedSAM | WORD, etc.* | MRI, CT, X-ray, Histology, Gross |
Segmentation with text prompts (G-Seg) | Grounding DINO + MedSAM | WORD, etc.* | MRI, CT, X-ray, Histology |
Medical report generation (MRG) | ChatCAD | MIMIC-CXR | X-ray |
Retrieval augmented generation (RAG) | ChatCAD+ | Merck Manual | -- |
Note: --
means that the RAG task only focuses on natural language without handling images. WORD, etc.*
indicates various data sources including WORD, FLARE2021, BRATS, Montgomery County X-ray Set (MC), VinDr-CXR, and Cellseg.
git clone https://github.com/Wangyixinxin/MMedAgent.git
cd MMedAgent
conda create -n mmedagent python=3.10 -y
conda activate mmedagent
pip install --upgrade pip # enable PEP 660 support
pip install -e .
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
Model checkpoints (lora) and instruction-tuning data can be downloaded here
Download the model and data by following:
git lfs install
git clone https://huggingface.co/andy0207/mmedagent
The model weights below are delta weights. The usage of LLaVA-Med checkpoints should comply with the base LLM's model license: LLaMA.
The delta weights for LLaVA-Med are provided. Please download following the below instructions or see details in (LLaVA-Med)[https://github.com/microsoft/LLaVA-Med/tree/v1.0.0]
Model Descriptions | Model Delta Weights | Size |
---|---|---|
LLaVA-Med | llava_med_in_text_60k_ckpt2_delta.zip | 11.06 GB |
Instructions:
python3 -m llava.model.apply_delta \
--base /path/to/llama-7b \
--target ./base_model \
--delta /path/to/llava_med_delta_weights
Training with lora:
deepspeed llava/train/train_mem.py \
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
--deepspeed ./scripts/zero2.json \
--model_name_or_path ./base_model \
--version v1\
--data_path ./train_data_json/example.jsonl \
--image_folder ./train_images \
--vision_tower openai/clip-vit-large-patch14-336 \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--image_aspect_ratio pad \
--group_by_modality_length False \
--bf16 True \
--output_dir ./checkpoints/final_model_lora \
--num_train_epochs 30 \
--per_device_train_batch_size 12 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 3000 \
--save_total_limit 2 \
--learning_rate 2e-4 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 2048 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to wandb
or use tuning.sh
Download the MMedAgent checkpoints (lora) here and set --model-path as this folder.
CUDA_VISIBLE_DEVICES=0 python scripts/merge_lora_weights.py \
--model-path ./checkpoints/final_model_lora \
--model-base ./base_model \
--save-model-path ./llava_med_agent
or use merge.sh
CUDA_VISIBLE_DEVICES=0 python llava/eval/model_vqa.py \
--model-path ./llava_med_agent \
--question-file ./eval_data_json/eval_example.jsonl \
--image-folder ./eval_images \
--answers-file ./eval_data_json/output_agent_eval_example.jsonl \
--temperature 0.2
or use eval.sh
python llava/eval/eval_gpt4o.py \
--api-key "your-api-key" \
--question ./eval_data_json/eval_example.jsonl \
--output ./eval_data_json/output_gpt4o_eval_example.jsonl \
--max-tokens 1024
or use eval_gpt4o.sh
All the outputs will be assessed by GPT-4 and rated on a scale from 1 to 10 based on their helpfulness, relevance, accuracy, and level of details. Check our paper for detailed evaluation.
python ./llava/eval/eval_multimodal_chat_gpt_score.py \
--question_input_path ./eval_data_json/eval_example.jsonl \
--input_path ./eval_data_json/output_gpt4o_eval_example.jsonl
--output_path ./eval_data_json/compare_gpt4o_medagent_reivew.jsonl
or use eval_gpt4.sh
We build the first open-source instruction tuning dataset for multi-modal medical agents.
Data | size |
---|---|
instruction_all.json | 97.03 MiB |
Download the data by:
git lfs install
git clone https://huggingface.co/andy0207/mmedagent
Please download the following segmentation dataset and refer to the following codes to process the data into required data format for grounding task.
python data_processing/path_writing.py
python data_processing/dataset_loading.py
WORD, FLARE2021, BRATS, [Montgomery County X-ray Set (MC)](), VinDr-CXR, and Cellseg
After downloading and processing the necessary datasets, please refer to combine.ipynb for data ID compiling, ensuring the image id to be aligned with our instruction-tuning dataset.
Please download the dependent checkpoints and JSON files for src/ChatCAD_R.
You can download from either the original ChatCAD repo or from Google Drive.
Please save r2gcmn_mimic-cxr.pth and JFchexpert.pth in ChatCAD_R/weights/ and save annotation.json in ChatCAD_R/r2g/.
Download Tool Checkpoints
Download Tools and Dependending Packages
cd src
git clone https://github.com/IDEA-Research/GroundingDINO.git
cd GroundingDINO
pip install -e .
cd src
git clone https://github.com/bowang-lab/MedSAM.git
cd MedSAM
pip install -e .
pip install -r src/ChatCAD_R/requirements.txt
pip install httpx==0.24.0 supervision==0.10.0 # make sure version not overwritten
Run the following commands in separate terminals:
python -m llava.serve.controller --host 0.0.0.0 --port 20001
python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:20001 --port 40000 --worker http://localhost:40000 --model-path <Your Model Path>
python serve/grounding_dino_worker.py
python serve/MedSAM_worker.py
python serve/grounded_medsam_worker.py
python serve/biomedclip_worker.py
python serve/chatcad_G_worker.py
python serve/chatcad_R_worker.py
python llava/serve/gradio_web_server_mmedagent.py --controller http://localhost:20001 --model-list-mode reload
You can now access the model in localhost:7860
If you find this paper or code useful for your research, please cite our paper:
@article{li2024mmedagent,
title={MMedAgent: Learning to Use Medical Tools with Multi-modal Agent},
author={Li, Binxu and Yan, Tiankai and Pan, Yuanting and Xu, Zhe and Luo, Jie and Ji, Ruiyang and Liu, Shilong and Dong, Haoyu and Lin, Zihao and Wang, Yixin},
journal={arXiv preprint arXiv:2407.02483},
year={2024}
}
MMedAgent was built on LLaVA-PLUS and LLaVA-Med was chosen as the backbone.
We are working on extending the current tool lists to handle more medical tasks and modalities. We deeply appreciate any contribution made to improve the our Medical Agent. If you are developing better LLM-tools, feel free to contact us!