WeisongZhao / Sparse-SIM

Official MATLAB implementation of the "Sparse deconvolution" -v1.0.3
https://weisongzhao.github.io/Sparse-SIM/
Open Data Commons Open Database License v1.0
77 stars 13 forks source link
deconvolution fluorescence-microscopy-imaging image-processing image-restoration matlab-gui microscopy super-resolution

code website releases paper paper
Github commit DOI Github All Releases License
Twitter GitHub watchers GitHub stars GitHub forks

Sparse deconvolutionv1.0.3

Words written in the front: Physical resolution might be meaningless if in the mathmetical space.

It is a part of publication. For details, please refer to: Weisong Zhao et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy, Nature Biotechnology 40, 606–617 (2022).


The related Python version can be found at HERE

You can also find some fancy results and comparisons on my website.

If you are interested in our work, I wrote a #behind_the_paper post for further reading.

Here is also a blog about it for further reading.

This method has been tested on various types of Confocal microscopy & STED microscopy, Wide-field & TIRF microscopy, Light-sheet microscopy, Multi-photon microscopy, and Structured illumination microscopy, feasible for single-slice, time-lapse, and volumetric datasets.

Introduction

This repository contains the updating version of Sparse deconvolution. The Sparse deconvolution is an universal post-processing framework for fluorescence (or intensity-based) image restoration, including xy (2D), xy-t (2D along t axis), and xy-z (3D) images. It is based on the natural priori knowledge of forward fluorescence imaging model: sparsity and continuity along xy-t (z) axes.

Instruction

Installation of binary executable file (.exe) for Win10 system.

Or directly click the .\for Maltab users\Sparse_SIM.exe if you are using MATLAB 2017b.

Algorithm UI

Parameters: Wiki and Document

Tested platform

This software has been tested on:

More on Wiki.

Version

Related links:

Plans
  • Debug mode for parameter-adjustment;
  • A Pyhton version of Sparse deconvolution;
  • A imagej-plugin of Sparse deconvolution;
  • A Headless mode;
  • Reduce the necessary/exposed parameters.
  • Open source Sparse deconvolution