WxxShirley / Awesome-Graph-Prompt

Awesome Papers About Performing Prompting On Graphs
MIT License
346 stars 24 forks source link

Awesome-Graph-Prompt

A collection of AWESOME things about performing prompt learning on Graphs.
![Awesome](https://awesome.re/badge.svg) ![GitHub stars](https://img.shields.io/github/stars/WxxShirley/Awesome-Graph-Prompt.svg)
Recently, the workflow of **"pre-train, fine-tune"** has been shown less effective and efficient when dealing with diverse downstream tasks on graph domain. Inspired by the prompt learning in natural language processing (NLP) domain, the **"pre-train, prompt"** workflow has emerged as a promising solution. This repo aims to provide a curated list of research papers that explore the prompt learning on graphs. **It is based on our Survey Paper: [Graph Prompt Learning: A Comprehensive Survey and Beyond](https://arxiv.org/abs/2311.16534)**. We will try to make this list updated frequently. If you found any error or any missed paper, please don't hesitate to open issues or pull requests.🌹 ## Table of Contents - [Awesome-Graph-Prompt](#awesome-graph-prompt) - [Table of Contents](#table-of-contents) - [GNN Prompting Papers](#gnn-prompting-papers) - [Multi-Modal Prompting with Graphs](#multi-modal-prompting-with-graphs) - [Prompt in Text-Attributed Graphs](#prompt-in-text-attributed-graphs) - [Large Language Models in Graph Data Processing](#large-language-models-in-graph-data-processing) - [Multi-modal Fusion with Graph and Prompting](#multi-modal-fusion-with-graph-and-prompting) - [Graph Domain Adaptation with Prompting](#graph-domain-adaptation-with-prompting) - [Application Papers](#application-papers) - [Dynamic Graphs](#dynamic-graphs) - [Social Networks](#social-networks) - [Recommender Systems](#recommender-systems) - [Knowledge Graph](#knowledge-graph) - [Biology](#biology) - [Others](#others) - [Other Resources](#other-resources) - [Open Source](#open-source) - [Benchmarks](#benchmarks) - [Datasets](#datasets) - [Online Talks](#online-talks) - [Blogs](#blogs) - [Contributing](#contributing) - [Citation](#citation) ## GNN Prompting Papers Summary of existing representative works on graph prompt. $\mathcal{S}$: Subgraph. $V(\mathcal{S})$: Node set within subgraph $\mathcal{S}$. $\pi$: Pre-trained parameters. $\phi$: Task head parameters. $\theta$: Prompt parameters. $\widetilde{\mathbf{s}}$: Filled prompt. ![GraphPromptSummary](./README.assets/Summary_Graph_Prompt.jpg) 1. **Does Graph Prompt Work? A Data Operation Perspective with Theoretical Analysis.** In **arXiv**, [[Paper](https://arxiv.org/abs/2410.01635)]. ![](https://img.shields.io/badge/Theoretical%20Basis-black) ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens%20Graphs-red) ![](https://img.shields.io/badge/Downstream%3A%20Graph-yellow) 2. **GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks**. In **KDD'2022**, [[Paper](https://dl.acm.org/doi/10.1145/3534678.3539249 )] [[Code](https://github.com/MingChen-Sun/GPPT)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Node-yellow) 3. **SGL-PT: A Strong Graph Learner with Graph Prompt Tuning**. In **arXiv**, [[Paper](https://arxiv.org/abs/2302.12449)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Node-yellow) 4. **GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks**. In **WWW'2023**, [[Paper](https://dl.acm.org/doi/10.1145/3543507.3583386 )] [[Code](https://github.com/Starlien95/GraphPrompt )]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Node%2FGraph-yellow) 5. **All in One: Multi-Task Prompting for Graph Neural Networks**. In **KDD'2023** Best Paper Award 🌟, [[Paper](https://arxiv.org/abs/2307.01504 )] [[Code](https://github.com/sheldonresearch/ProG)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Graphs-red) ![](https://img.shields.io/badge/Downstream%3A%20Node%2FEdge%2FGraph-yellow) 6. **Deep Graph Reprogramming**. In **CVPR'2023** Highlight 🌟, [[Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Jing_Deep_Graph_Reprogramming_CVPR_2023_paper.pdf)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Graphs-red) ![](https://img.shields.io/badge/Downstream%3A%20Node%2FGraph-yellow) 7. **Virtual Node Tuning for Few-shot Node Classification**. In **KDD'2023**, [[Paper](https://arxiv.org/abs/2306.06063)]. ![](https://img.shields.io/badge/Encoder%3AGraph%20Transformer-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Node-yellow) 8. **PRODIGY: Enabling In-context Learning Over Graphs**. In **NeurIPS'2023** Spotlight 🌟, [[Paper](https://arxiv.org/abs/2305.12600)] [[Code](https://github.com/snap-stanford/prodigy )]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Graphs-red) ![](https://img.shields.io/badge/Downstream%3A%20Node%2FEdge%2FGraph-yellow) 9. **Universal Prompt Tuning for Graph Neural Networks**. In **NeurIPS'2023**, [[Paper](https://arxiv.org/abs/2209.15240)] [[Code](https://github.com/LuckyTiger123/GPF)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Graph-yellow) 10. **Deep Prompt Tuning for Graph Transformers**. In **arXiv**, [[Paper](https://arxiv.org/abs/2309.10131)]. ![](https://img.shields.io/badge/Encoder%3AGraph%20Transformer-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Graph-yellow) 11. **Prompt Tuning for Multi-View Graph Contrastive Learning**. In **arXiv**, [[Paper](https://arxiv.org/abs/2310.10362)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Node%2FEdge%2FGraph-yellow) 12. **ULTRA-DP:Unifying Graph Pre-training with Multi-task Graph Dual Prompt**. In **arXiv**, [[Paper](https://arxiv.org/abs/2310.14845)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Node-yellow) 13. **HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks**. In **WWW'2024**, [[Paper](https://arxiv.org/abs/2310.15318)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Node-yellow) 14. **Enhancing Graph Neural Networks with Structure-Based Prompt**. In **arXiv**, [[Paper](https://arxiv.org/abs/2310.17394)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Graphs-red) ![](https://img.shields.io/badge/Downstream%3A%20Node%2FGraph-yellow) 15. **Generalized Graph Prompt: Toward a Unification of Pre-Training and Downstream Tasks on Graphs**. In **TKDE'2024**, [[Paper](https://arxiv.org/abs/2311.15317)] [[Code](https://github.com/gmcmt/graph_prompt_extension)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Node%2FGraph-yellow) 16. **HGPROMPT: Bridging Homogeneous and Heterogeneous Graphs for Few-shot Prompt Learning**. In **AAAI'2024**, [[Paper](https://arxiv.org/abs/2312.01878)] [[Code](https://github.com/Starlien95/HGPrompt)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Node%2FGraph-yellow) 17. **MultiGPrompt for Multi-Task Pre-Training and Prompting on Graphs**. In **WWW'2024**, [[Paper](https://arxiv.org/abs/2312.03731)] [[Code](https://github.com/Nashchou/MultiGPrompt)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Node%2FGraph-yellow) 18. **Subgraph-level Universal Prompt Tuning**. In **arXiv**, [[Paper](https://arxiv.org/pdf/2402.10380.pdf)] [[Code](https://anonymous.4open.science/r/SUPT-F7B1/)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Graph-yellow) 19. **Inductive Graph Alignment Prompt: Bridging the Gap between Graph Pre-training and Inductive Fine-tuning From Spectral Perspective**. In **WWW'2024**, [[Paper](https://arxiv.org/pdf/2402.13556.pdf)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Node%2FGraph-yellow) 20. **A Unified Graph Selective Prompt Learning for Graph Neural Networks**. In **arXiv**, [[Paper](https://arxiv.org/pdf/2406.10498)]. ![](https://img.shields.io/badge/Encoder%3AGNN-green) ![](https://img.shields.io/badge/Prompt%20as%20Tokens-red) ![](https://img.shields.io/badge/Downstream%3A%20Graph-yellow) ## Multi-Modal Prompting with Graphs ### Prompt in Text-Attributed Graphs 1. **Augmenting Low-Resource Text Classification with Graph-Grounded Pre-training and Prompting**. In **SIGIR'2023**, [[Paper](https://arxiv.org/abs/2305.03324 )] [[Code](https://github.com/WenZhihao666/G2P2 )]. 2. **Prompt Tuning on Graph-augmented Low-resource Text Classification**. In **arXiv**, [[Paper](https://arxiv.org/abs/2307.10230 )] [[Code](https://github.com/WenZhihao666/G2P2-conditional )]. 3. **Prompt-Based Zero- and Few-Shot Node Classification: A Multimodal Approach**. In **arXiv**, [[Paper](https://arxiv.org/abs/2307.11572 )]. 4. **Prompt-based Node Feature Extractor for Few-shot Learning on Text-Attributed Graphs**. In **arXiv**, [[Paper](https://arxiv.org/abs/2309.02848 )]. 5. **Large Language Models as Topological Structure Enhancers for Text-Attributed Graphs**. In **arXiv**, [[Paper](https://arxiv.org/pdf/2311.14324.pdf )]. 6. **ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs**. In **KDD'2024**, [[Paper](https://arxiv.org/abs/2402.11235)] [[Code](https://github.com/NineAbyss/ZeroG)]. 7. **Pre-Training and Prompting for Few-Shot Node Classification on Text-Attributed Graphs**. In **KDD'2024**, [[Paper](https://arxiv.org/abs/2407.15431)] [[Code](https://github.com/THUDM/P2TAG)]. ### Large Language Models in Graph Data Processing > > For this research line, please refer to **Awesome LLMs with Graph Tasks** [[Survey Paper](https://arxiv.org/abs/2311.12399) | [Github Repo](https://github.com/yhLeeee/Awesome-LLMs-in-Graph-tasks)] > > We **highly recommend** this work as they have provided a comprehensive survey to summarize the works on the integration of **LLM and Graph** πŸ‘ ### Multi-modal Fusion with Graph and Prompting 1. **GraphAdapter: Tuning Vision-Language Models With Dual Knowledge Graph**. In **NeurIPS'2023**, [[Paper](http://arxiv.org/abs/2309.13625)] [[Code](https://github.com/lixinustc/GraphAdapter )]. `Graph+Text+Image` 2. **SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction and Drug Design**. In **arXiv**, [[Paper](http://arxiv.org/abs/2307.11694)]. `Graph+Text` 3. **Which Modality should I use - Text, Motif, or Image? Understanding Graphs with Large Language Models**. In **arXiv**, [[Paper](https://arxiv.org/pdf/2311.09862.pdf)]. `Graph+Text+Image` ## Graph Domain Adaptation with Prompting 1. **GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks**. In **KDD'2023**, [[Paper](https://arxiv.org/pdf/2306.11264.pdf)] [[Code](https://github.com/WtaoZhao/GraphGLOW )]. ![](https://img.shields.io/badge/Structural%20Alignment-A52A2A) 2. **GraphControl: Adding Conditional Control to Universal Graph Pre-trained Models for Graph Domain Transfer Learning**. In **WWW'2024**, [[Paper](https://arxiv.org/abs/2310.07365)] [[Code](https://github.com/wykk00/GraphControl)] [[Chinese Blog](https://zhuanlan.zhihu.com/p/680351601)]. ![](https://img.shields.io/badge/Semantic%20Alignment-A52A2A) ![](https://img.shields.io/badge/Structural%20Alignment-A52A2A) 3. **All in One and One for All: A Simple yet Effective Method towards Cross-domain Graph Pretraining**. In **KDD'2024**, [[Paper](https://arxiv.org/abs/2402.09834)] [[Code](https://github.com/cshhzhao/GCOPE)]. ![](https://img.shields.io/badge/Semantic%20Alignment-A52A2A) 4. **Text-Free Multi-domain Graph Pre-training: Toward Graph Foundation Models**. In **arXiv**, [[Paper](https://arxiv.org/abs/2405.13934)]. ## Application Papers ### Dynamic Graphs 1. **Prompt Learning on Temporal Interaction Graphs**. In **arXiv**, [[Paper](https://arxiv.org/abs/2402.06326)]. 2. **Prompt-Enhanced Spatio-Temporal Graph Transfer Learning**. In **arXiv**, [[Paper](https://arxiv.org/abs/2405.12452)]. 3. **DyGPrompt: Learning Feature and Time Prompts on Dynamic Graphs**. In **arXiv**, [[Paper](https://arxiv.org/abs/2405.13937)]. ### Social Networks 1. **Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News Detection**. In **CIKM'2023**, [[Paper](https://arxiv.org/pdf/2309.16424.pdf )] [[Code](https://github.com/jiayingwu19/Prompt-and-Align)]. `Fake News Detection` 2. **Voucher Abuse Detection with Prompt-based Fine-tuning on Graph Neural Networks**. In **CIKM'2023**, [[Paper](https://arxiv.org/abs/2308.10028 )]. `Fraud Detection` 3. **ProCom: A Few-shot Targeted Community Detection Algorithm**. In **KDD'2024**, [[Paper](https://arxiv.org/abs/2408.07369)] [[Code](https://github.com/WxxShirley/KDD2024ProCom)]. `Community Detection` ### Recommender Systems 1. **Adaptive Coordinators and Prompts on Heterogeneous Graphs for Cross-Domain Recommendations**. In **arXiv 2024**, [[Paper](https://arxiv.org/abs/2410.11719)]. `Cross-domain Recommendation` 2. **Contrastive Graph Prompt-tuning for Cross-domain Recommendation**. In **TOIS'2023**, [[Paper](https://arxiv.org/pdf/2308.10685.pdf )]. `Cross-domain Recommendation` 3. **An Empirical Study Towards Prompt-Tuning for Graph Contrastive Pre-Training in Recommendations**. In **NeurIPS'2023**, [[Paper](https://openreview.net/pdf?id=XyAP8ScqLV)] [[Code](https://github.com/Haoran-Young/CPTPP )]. `General Recommendation` 4. **Motif-Based Prompt Learning for Universal Cross-Domain Recommendation**. In **WSDM'2024**, [[Paper](https://arxiv.org/abs/2310.13303)]. `Cross-domain Recommendation` 5. **GraphPro: Graph Pre-training and Prompt Learning for Recommendation**. In **WWW'2024**, [[Paper](https://arxiv.org/abs/2311.16716)] [[Code](https://github.com/HKUDS/GraphPro)]. `General Recommendation` 6. **GPT4Rec: Graph Prompt Tuning for Streaming Recommendation**. In **SIGIR'2024**, [[Paper](https://arxiv.org/pdf/2406.08229)]. `General Recommendation` ### Knowledge Graph 1. **Structure Pretraining and Prompt Tuning for Knowledge Graph Transfer**. In **WWW'2023**, [[Paper](https://arxiv.org/pdf/2303.03922.pdf )] [[Code](https://github.com/zjukg/KGTransformer )]. 2. **Graph Neural Prompting with Large Language Models**. In **AAAI'2024**, [[Paper](https://arxiv.org/pdf/2309.15427.pdf)]. 3. **Knowledge Graph Prompting for Multi-Document Question Answering**. In **arXiv**, [[Paper](https://arxiv.org/abs/2308.11730 )] [[Code](https://github.com/YuWVandy/KG-LLM-MDQA )]. 4. **Multi-domain Knowledge Graph Collaborative Pre-training and Prompt Tuning for Diverse Downstream Tasks**. In **arXiv**, [[Paper](https://arxiv.org/abs/2405.13085)] [[Code](https://github.com/zjukg/MuDoK)]. ### Biology 1. **Can Large Language Models Empower Molecular Property Prediction?** In **arXiv**, [[Paper](https://arxiv.org/pdf/2307.07443.pdf)] [[Code](https://github.com/ChnQ/LLM4Mol)]. 2. **GIMLET: A Unified Graph-Text Model for Instruction-Based Molecule Zero-Shot Learning**. In **NeurIPS'2023**, [[Paper](https://arxiv.org/pdf/2306.13089.pdf)] [[Code](https://github.com/zhao-ht/GIMLET )]. 3. **MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter**. In **EMNLP'2023**, [[Paper](http://arxiv.org/abs/2310.12798)] [[Code](https://github.com/acharkq/MolCA)]. 4. **ReLM: Leveraging Language Models for Enhanced Chemical Reaction Prediction**. In **EMNLP'2023**, [[Paper](https://arxiv.org/pdf/2310.13590.pdf)] [[Code](https://github.com/syr-cn/ReLM)]. 5. **MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular Representation Learning**. In **WSDM'2024**, [[Paper](https://arxiv.org/abs/2212.10614)]. 6. **Protein Multimer Structure Prediction via PPI-guided Prompt Learning**. In **ICLR'2024**, [[Paper](https://openreview.net/forum?id=OHpvivXrQr)]. 7. **DDIPrompt: Drug-Drug Interaction Event Prediction based on Graph Prompt Learning**. In **CIKM'2024**, [[Paper](https://arxiv.org/abs/2402.11472)]. ### Others 1. **A Data-centric Framework to Endow Graph Neural Networks with Out-Of-Distribution Detection Ability**. In **KDD'2023**, [[Paper](https://dl.acm.org/doi/abs/10.1145/3580305.3599244)] [[Code](https://github.com/BUPT-GAMMA/AAGOD )]. `OOD Detection` 2. **MMGPL: Multimodal Medical Data Analysis with Graph Prompt Learning**. In **arXiv**, [[Paper](https://arxiv.org/abs/2312.14574)]. 3. **Instruction-based Hypergraph Pretraining**. In **SIGIR'2024**, [[Paper](https://arxiv.org/abs/2403.19063)]. `Hypergraph Prompt` 4. **Cross-Context Backdoor Attacks against Graph Prompt Learning**. In **KDD'2024**, [[Paper](https://arxiv.org/pdf/2405.17984)] [[Code](https://github.com/xtLyu/CrossBA)]. `Cross-Context Backdoor Attacks` 5. **Urban Region Pre-training and Prompting: A Graph-based Approach**. In **arXiv**, [[Paper](https://arxiv.org/abs/2408.05920)]. `Urban Region Representation` ## Other Resources ### Open Source * **ProG: A Unified Library for Graph Prompting** [[Website](https://graphprompt.github.io/)] [[Code](https://github.com/sheldonresearch/ProG)] ProG (Prompt Graph) is a library built upon PyTorch to easily conduct single or multiple task prompting for a pre-trained Graph Neural Networks (GNNs). ### Benchmarks * **ProG: A Graph Prompt Learning Benchmark** [[Paper](https://arxiv.org/pdf/2406.05346)] ProG benchmark integrates **SIX** pre-training methods and **FIVE** state-of-the-art graph prompt techniques, evaluated across **FIFTEEN** diverse datasets to assess **performance, flexibility, and efficiency**. ### Datasets Datasets that are commonly used in GNN prompting papers.
Citation Networks | Dataset | \#Node | \#Edge | \#Feature | \#Class | | :--------------: | :-----------: | :-----------: | :-------: | :-----: | | Cora | 2708 | 5429 | 1433 | 7 | | CoraFull | 19793 | 63421 | 8710 | 70 | | Citeseer | 3327 | 4732 | 3703 | 6 | | DBLP | 17716 | 105734 | 1639 | 4 | | Pubmed | 19717 | 44338 | 500 | 3 | | Coauthor-CS | 18333 | 81894 | 6805 | 15 | | Coauthor-Physics | 34493 | 247962 | 8415 | 5 | | ogbn-arxiv | 169343 | 1166243 | 128 | 40 |
Purchase Networks | Dataset | \#Node | \#Edge | \#Feature | \#Class | | :--------------: | :-----------: | :-----------: | :-------: | :-----: | | Amazon-Computers | 13752 | 245861 | 767 | 10 | | Amazon-Photo | 7650 | 119081 | 745 | 8 | | ogbn-products | 2449029 | 61859140 | 100 | 47 |
Social Networks | Dataset | \#Node | \#Edge | \#Feature | \#Class | | :--------------: | :-----------: | :-----------: | :-------: | :-----: | | Reddit | 232965 | 11606919 | 602 | 41 | | Flickr | 89250 | 899756 | 500 | 7 |
Molecular Graphs | Dataset | \#Graph | \#Node (Avg.) | \#Edge (Avg.) | \#Feature | \#Class | | :--------------:| :-----: | :-----------: | :-----------: | :-------: | :-----: | | COX2 | 467 | 41.22 | 43.45 | 3 | 2 | | ENZYMES | 600 | 32.63 | 62.14 | 18 | 6 | | MUTAG | 188 | 17.93 | 19.79 | 7 | 2 | | MUV | 93087 | 24.23 | 26.28 | - | 17 | | HIV | 41127 | 25.53 | 27.48 | - | 2 | | SIDER | 1427 | 33.64 | 35.36 | - | 27 |
### Online Talks * Official Presentation of **All in One** [Link](https://www.bilibili.com/video/BV1q94y1k7nF) ### Blogs * A Chinese Blog that provides a comprehensive introduction of **ALL** graph prompting works [[Zhihu](https://zhuanlan.zhihu.com/p/681628720)] ## Contributing πŸ‘ Contributions to this repository are welcome! If you have come across relevant resources, feel free to open an issue or submit a pull request. ## Citation If you find this repo helpful to you, please feel free to cite these works: [Survey Paper](https://arxiv.org/abs/2311.16534) ```latex @article{sun2023graph, title = {Graph Prompt Learning: A Comprehensive Survey and Beyond}, author = {Sun, Xiangguo and Zhang, Jiawen and Wu, Xixi and Cheng, Hong and Xiong, Yun and Li, Jia}, year = {2023}, journal = {arXiv:2311.16534}, eprint = {2311.16534}, archiveprefix = {arxiv} } ``` [Tutorial](https://dl.acm.org/doi/abs/10.1145/3637528.3671456) ```latex @inproceedings{li2024graph, title={Graph Intelligence with Large Language Models and Prompt Learning}, author={Li, Jia and Sun, Xiangguo and Li, Yuhan and Li, Zhixun and Cheng, Hong and Yu, Jeffrey Xu}, booktitle={Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining}, pages={6545--6554}, year={2024} } ``` [ProG Library](https://github.com/sheldonresearch/ProG) ```latex @inproceedings{sun2023all, title={All in One: Multi-Task Prompting for Graph Neural Networks}, author={Sun, Xiangguo and Cheng, Hong and Li, Jia and Liu, Bo and Guan, Jihong}, booktitle={Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery \& data mining (KDD'23)}, year={2023}, pages = {2120–2131}, location = {Long Beach, CA, USA}, isbn = {9798400701030}, url = {https://doi.org/10.1145/3580305.3599256}, doi = {10.1145/3580305.3599256} } ``` [Theoretical Support](https://arxiv.org/abs/2410.01635) ```latex @article{wang2024does, title={Does Graph Prompt Work? A Data Operation Perspective with Theoretical Analysis}, author={Qunzhong Wang and Xiangguo Sun and Hong Cheng}, year={2024}, journal = {arXiv preprint arXiv:2410.01635}, url={https://arxiv.org/abs/2410.01635} } ``` Other Representative Works: πŸ”₯ **All in One** A Representative GNN Prompting Framework ```latex @inproceedings{sun2023all, title={All in One: Multi-Task Prompting for Graph Neural Networks}, author={Sun, Xiangguo and Cheng, Hong and Li, Jia and Liu, Bo and Guan, Jihong}, booktitle={Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery \& data mining (KDD'23)}, year={2023}, pages = {2120–2131}, location = {Long Beach, CA, USA}, isbn = {9798400701030}, url = {https://doi.org/10.1145/3580305.3599256}, doi = {10.1145/3580305.3599256} } ``` πŸ”₯ **All in One and One for All** A Cross-domain Graph Pre-training Framework ```latex @article{zhao2024all, title={All in One and One for All: A Simple yet Effective Method towards Cross-domain Graph Pretraining}, author={Haihong Zhao and Aochuan Chen and Xiangguo Sun and Hong Cheng and Jia Li}, year={2024}, eprint={2402.09834}, archivePrefix={arXiv} } ``` πŸ”₯ **TIGPrompt** A Temporal Interation Graph Prompting Framework ```latex @article{chen2024prompt, title={Prompt Learning on Temporal Interaction Graphs}, author={Xi Chen and Siwei Zhang and Yun Xiong and Xixi Wu and Jiawei Zhang and Xiangguo Sun and Yao Zhang and Yinglong Zhao and Yulin Kang}, year={2024}, eprint={2402.06326}, archivePrefix={arXiv}, journal = {arXiv:2402.06326} } ``` πŸ”₯ **Graph Prompting Works on Biology Domain** ```latex @inproceedings{gao2024protein, title={Protein Multimer Structure Prediction via {PPI}-guided Prompt Learning}, author={Ziqi Gao and Xiangguo Sun and Zijing Liu and Yu Li and Hong Cheng and Jia Li}, booktitle={The Twelfth International Conference on Learning Representations (ICLR)}, year={2024}, url={https://openreview.net/forum?id=OHpvivXrQr} } @article{wang2024ddiprompt, title={DDIPrompt: Drug-Drug Interaction Event Prediction based on Graph Prompt Learning}, author={Yingying Wang and Yun Xiong and Xixi Wu and Xiangguo Sun and Jiawei Zhang}, year={2024}, eprint={2402.11472}, archivePrefix={arXiv}, journal = {arXiv:2402.11472} } ``` πŸ”₯ **Graph Prompting Works on Cross-domain Recommendation** ```latex @article{zhang2024adaptive, title={Adaptive Coordinators and Prompts on Heterogeneous Graphs for Cross-Domain Recommendations}, author={Hengyu Zhang and Chunxu Shen and Xiangguo Sun and Jie Tan and Yu Rong and Chengzhi Piao and Hong Cheng and Lingling Yi}, journal={arXiv preprint arXiv:2410.11719}, year={2024} } ``` πŸ”₯ **Graph Prompting Works on Urban Computing** ```latex @article{jin2024urban, title={Urban Region Pre-training and Prompting: A Graph-based Approach}, author={Jin, Jiahui and Song, Yifan and Kan, Dong and Zhu, Haojia and Sun, Xiangguo and Li, Zhicheng and Sun, Xigang and Zhang, Jinghui}, journal={arXiv preprint arXiv:2408.05920}, year={2024} } ```