This repository is the official PyTorch implementation of “基于卷积神经网络的遥感图像全色锐化进展综述及相关数据集发布” (paper, homepage).
See the repo for more detailed descriptions.
See the PanCollection Paper for early results.
We recommend users to use this code-toolbox or similar toolbox DLPan-Toolbox + the dataset PanCollection (DLPan-Toolbox contains MATLAB test software package) for fair training and testing!
Satellite | Value | Comment |
---|---|---|
WorldView-3 | 2047 | Training; Testing; Generalization |
QuickBird | 2047 | Training; Testing |
GaoFen-2 | 1023 | Training; Testing |
WorldView-2 | 2047 | Training; Testing; Generalization |
🤗 To get started with PanCollection benchmark (training, inference, etc.), we recommend reading Google Colab!
import pancollection as pan
cfg = pan.TaskDispatcher.new(task='pansharpening', mode='entrypoint', arch='FusionNet',
dataset_name="gf2", use_resume=False,
dataset={'train': 'gf2', 'test': 'test_gf2_multiExm1.h5'})
print(pan.TaskDispatcher._task)
pan.trainer.main(cfg, pan.build_model, pan.getDataSession)
Step0. set your Python environment.
Then,
python setup.py develop
or
pip install -i pancollection https://pypi.org/simple
Step1.
Download datasets (WorldView-3, QuickBird, GaoFen2, WorldView2) from the homepage. Put it with the following format.
Verify the dataset path in PanCollection/UDL/Basis/option.py
, or you can print the output of run_pansharpening.py
, then set __cfg.data_dir__ to your dataset path.
|-$ROOT/Datasets
├── pansharpening
│ ├── training_data
│ │ ├── train_wv3.h5
│ │ ├── ...
│ ├── validation_data
│ │ │ ├── valid_wv3.h5
│ │ │ ├── ...
│ ├── test_data
│ │ ├── WV3
│ │ │ ├── test_wv3_multiExm.h5
│ │ │ ├── ...
Step2. Open PanCollection/UDL/pansharpening
, run the following code:
python run_pansharpening.py
step3. How to train/validate the code.
A training example:
run_pansharpening.py
where arch='BDPN', and configs/option_bdpn.py has:
cfg.eval = False,
cfg.workflow = [('train', 50), ('valid', 1)], cfg.dataset = {'train': 'wv3', 'valid': 'wv3_multiExm.h5'}
A test example:
run_test_pansharpening.py
cfg.eval = True or cfg.workflow = [('test', 1)]
Step4. How to customize your model.
def run_demo():
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from <your_model_file> import build
from pancollection.configs.configs import TaskDispatcher
from udl_vis.AutoDL.trainer import main
from pancollection.common.builder import build_model, getDataSession
import option_<your_model_file> # please refer to https://github.com/XiaoXiao-Woo/PanCollection/blob/main/pancollection/configs/option_fusionnet.py
cfg = TaskDispatcher.new(task='pansharpeninig', mode='entrypoint', arch='<your_model_name>', data_dir='<your_data_path>',
workflow=[('train', 10), ('valid', 1), ('test', 1)], resume_from=r"", experimental_desc="Test")
print(TaskDispatcher._task.keys())
main(cfg, build_model, getDataSession)
if __name__ == '__main__':
run_demo()
Step5. How to customize the code.
One model is divided into three parts:
Record hyperparameter configurations in folder of pancollection/configs/option_<modelName>.py
. For example, you can load pretrained model by __cfg.resume_from__ = "your_model_path".
Set model, loss, optimizer, scheduler in folder of pancollection/models/<modelName>_main.py
.
Write a new model in folder of pancollection/models/<modelName>/model_<modelName>.py
.
Note that when you add a new model into PanCollection, you need to update pancollection/models/__init__.py
and add option_<modelName>.py
.
Others
pansharpening/common/psdata.py.
1.Put model_<newModelName> and <newModelName>_main in pancollection/models.
2.Create a new folder of pancollection/configs to put option_<newModelName>.
3.Add a class in panCollection/models/base_model.py, like this:
class PanSharpeningModel(ModelDispatcher, name='pansharpening'):
udl-vis/mmcv/mmcv/runner/hooks
Note that: Don't put model/dataset/task-related files into the folder of AutoDL.
udl-vis/AutoDL/trainer.py
, please see udl-vis/mmcv/runner/epoch_based_runner.py[ ] hugging face 🤗
[ ] Support more models
[ ] Make the Leaderboard for model results.
We appreciate all contributions to improving PanCollection. Looking forward to your contribution to PanCollection.
Please cite this project if you use datasets or the toolbox in your research.
@misc{PanCollection,
author = {Xiao Wu, Liang-Jian Deng and Ran Ran},
title = {"PanCollection" for Remote Sensing Pansharpening},
url = {https://github.com/XiaoXiao-Woo/PanCollection/},
year = {2022},
}
@ARTICLE{dengjig2022,
author={邓良剑,冉燃,吴潇,张添敬},
journal={中国图象图形学报},
title={遥感图像全色锐化的卷积神经网络方法研究进展},
year={2022},
volume={},
number={9},
pages={},
doi={10.11834/jig.220540}
}
@ARTICLE{deng2022grsm,
author={L.-J. Deng, G. Vivone, M. E. Paoletti, G. Scarpa, J. He, Y. Zhang, J. Chanussot, and A. Plaza},
booktitle={IEEE Geoscience and Remote Sensing Magazine},
title={Machine Learning in Pansharpening: A Benchmark, from Shallow to Deep Networks},
year={2022},
pages={2-38},
doi={10.1109/MGRS.2020.3019315}
}
@InProceedings{Wu_2021_ICCV,
author = {Wu, Xiao and Huang, Ting-Zhu and Deng, Liang-Jian and Zhang, Tian-Jing},
title = {Dynamic Cross Feature Fusion for Remote Sensing Pansharpening},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {14687-14696}
}
This project is open sourced under GNU General Public License v3.0.