rMATS-long is an integrated computational workflow for long-read RNA-seq data. Building on our ESPRESSO tool for robust transcript discovery and quantification using long-read RNA-seq data, rMATS-long enables differential isoform analysis between sample groups, as well as classification and visualization of isoform structure and abundance.
Dependencies can be installed to a conda environment by running ./install. Then the scripts can be run when the conda environment is activated: conda activate ./conda_env
Another option is to install the rmats-long bioconda package:
conda install -c conda-forge -c bioconda rmats-long
The rMATS-long scripts are included in the bioconda package and will be available in that conda environment at /path/to/conda_env/rMATS-long/
Those versions were used during testing. Other versions may also be compatible
First run ESPRESSO to detect and quantify isoforms using long-read data. The ESPRESSO output can be used with scripts/rmats_long.py which runs the following steps:
The individual scripts used by scripts/rmats_long.py can also be run directly if desired
python rmats_long.py -h
usage: rmats_long.py [-h] --abundance ABUNDANCE --updated-gtf UPDATED_GTF
[--gencode-gtf GENCODE_GTF] --group-1 GROUP_1 --group-2
GROUP_2 [--group-1-name GROUP_1_NAME]
[--group-2-name GROUP_2_NAME] --out-dir OUT_DIR
[--num-threads NUM_THREADS]
[--process-top-n PROCESS_TOP_N]
[--plot-file-type {.pdf,.png,all}]
[--diff-transcripts DIFF_TRANSCRIPTS]
[--adj-pvalue ADJ_PVALUE] [--use-unadjusted-pvalue]
[--delta-proportion DELTA_PROPORTION]
[--compare-all-within-gene]
Analyze ESPRESSO results and produce plots for significant isoforms
options:
-h, --help show this help message and exit
--abundance ABUNDANCE
The path to the abundance.esp file from ESPRESSO
--updated-gtf UPDATED_GTF
The path to the updated.gtf file from ESPRESSO
--gencode-gtf GENCODE_GTF
The path to a gencode annotation.gtf file. Will be
used to identify the Ensembl canonical isoform and the
gene name
--group-1 GROUP_1 The path to a file listing the sample names for group
1. The file should have a single line with the sample
names as a comma separated list. The sample names
should match with the ESPRESSO abundance column names.
--group-2 GROUP_2 The path to a file listing the sample names for group
2
--group-1-name GROUP_1_NAME
A name for group 1 (default group 1)
--group-2-name GROUP_2_NAME
A name for group 2 (default group 2)
--out-dir OUT_DIR The path to use as the output directory
--num-threads NUM_THREADS
The number of threads to use (default 1)
--process-top-n PROCESS_TOP_N
Generate plots and classify isoform differences for
the top "n" significant genes. By default all
significant genes are processed
--plot-file-type {.pdf,.png,all}
The file type for output plots (default .pdf))
--diff-transcripts DIFF_TRANSCRIPTS
The path to the differential transcript results. If
given then skip the differential isoform calculation.
--adj-pvalue ADJ_PVALUE
The cutoff for adjusted p-value (default 0.05)
--use-unadjusted-pvalue
Use pvalue instead of adj_pvalue for the cutoff
--delta-proportion DELTA_PROPORTION
The cutoff for delta isoform proportion (default 0.1)
--compare-all-within-gene
Compare the most significant isoform to all other
isoforms in the gene. By default, the most significant
isoform is only compared to the most significant
isoform with a delta proportion in the opposite
direction.
scripts/detect_differential_isoforms.py detects differential isoform expression using DRIMSeq. The samples in the ESPRESSO abundance file need to be separated into two groups. The two groups are written to the --group-1
and --group-2
input files as comma separated lists. The isoform counts from the abundance file are then used in the DRIMSeq pipeline
The main output file written to --out-dir
is differential_transcripts.tsv
which has these columns:
gene_id
feature_id
: isoform IDlr
: likelihood ratio statistic from DRIMSeqdf
: degrees of freedompvalue
adj_pvalue
: Benjamini & Hochberg adjusted p-values{sample_name}_proportion
: proportion of this isoform among all isoforms in this gene (1 column per sample)group_1_average_proportion
group_2_average_proportion
delta_isoform_proportion
: group_1_average_proportion - group_2_average_proportion
The proportion columns were appended to the original output from DRIMSeq. differential_transcripts_filtered.tsv
contains only the rows meeting the significance cutoffs.
The --out-dir
also contains these files output by DRIMSeq:
differential_genes.tsv
gene_pvalues.png
precision_by_gene_expression.png
transcript_pvalues.png
transcripts_per_gene.png
A summary of the number of isoforms and genes passing the default filters will be printed to stdout. The counts using different filters can be printed using scripts/count_significant_isoforms.py
python detect_differential_isoforms.py -h
usage: detect_differential_isoforms.py [-h] --abundance ABUNDANCE --out-dir
OUT_DIR --group-1 GROUP_1 --group-2
GROUP_2 [--num-threads NUM_THREADS]
[--adj-pvalue ADJ_PVALUE]
[--use-unadjusted-pvalue]
[--delta-proportion DELTA_PROPORTION]
Detect differential isoform expression using DRIMSeq
options:
-h, --help show this help message and exit
--abundance ABUNDANCE
The path to the abundance.esp file from ESPRESSO
--out-dir OUT_DIR The path to use as the output directory
--group-1 GROUP_1 The path to a file listing the sample names for group
1. The file should have a single line with the sample
names as a comma separated list. The sample names
should match with the ESPRESSO abundance column names.
--group-2 GROUP_2 The path to a file listing the sample names for group
2.
--num-threads NUM_THREADS
The number of threads to use (default: 1)
--adj-pvalue ADJ_PVALUE
The cutoff for adjusted p-value (default: 0.05)
--use-unadjusted-pvalue
Use pvalue instead of adj_pvalue for the cutoff
--delta-proportion DELTA_PROPORTION
The cutoff for delta isoform proportion (default: 0.1)
python count_significant_isoforms.py -h
usage: count_significant_isoforms.py [-h] --diff-transcripts DIFF_TRANSCRIPTS
--out-tsv OUT_TSV
[--adj-pvalue ADJ_PVALUE]
[--use-unadjusted-pvalue]
[--delta-proportion DELTA_PROPORTION]
Count isoforms that meet the cutoff values
options:
-h, --help show this help message and exit
--diff-transcripts DIFF_TRANSCRIPTS
The path to the differential transcript results
--out-tsv OUT_TSV The path to write transcripts that meet the cutoff
values
--adj-pvalue ADJ_PVALUE
The cutoff for adjusted p-value (default: 0.05)
--use-unadjusted-pvalue
Use pvalue instead of adj_pvalue for the cutoff
--delta-proportion DELTA_PROPORTION
The cutoff for delta isoform proportion (default: 0.1)
scripts/visualize_isoforms.py creates plots showing the isoform abundance and structure. The --gene-id
can be selected from the differential isoform test. The --abundance
and --updated-gtf
files are from the ESPRESSO output. By default, the most abundant isoforms for the gene will be plotted. Specific isoforms can be plotted with --main-transcript-ids
or isoforms can be determined automatically if --diff-transcripts
or --gencode-gtf
are given. The most significant isoform and another significant isoform with opposite delta_isoform_proportion
will be chosen from --diff-transcripts
and the Ensembl canonical transcript will be selected based on a tag in the --gencode-gtf
python visualize_isoforms.py -h
usage: visualize_isoforms.py [-h] --gene-id GENE_ID [--gene-name GENE_NAME]
--abundance ABUNDANCE --updated-gtf UPDATED_GTF
[--gencode-gtf GENCODE_GTF]
[--diff-transcripts DIFF_TRANSCRIPTS] --out-dir
OUT_DIR [--plot-file-type {.pdf,.png,all}]
[--main-transcript-ids MAIN_TRANSCRIPT_IDS]
[--max-transcripts MAX_TRANSCRIPTS]
[--intron-scaling INTRON_SCALING]
[--group-1 GROUP_1] [--group-2 GROUP_2]
[--group-1-name GROUP_1_NAME]
[--group-2-name GROUP_2_NAME]
Visualize the structure and abundance of isoforms
options:
-h, --help show this help message and exit
--gene-id GENE_ID The gene_id to visualize
--gene-name GENE_NAME
The name for the gene (used as plot title). If not
given then the gene_name from --gencode-gtf will be
used. If no other name is found then --gene-id is used
as a default
--abundance ABUNDANCE
The path to the abundance.esp file from ESPRESSO
--updated-gtf UPDATED_GTF
The path to the updated.gtf file from ESPRESSO
--gencode-gtf GENCODE_GTF
The path to a gencode annotation.gtf file. Can be used
to identify the gene_name and Ensembl canonical
isoform
--diff-transcripts DIFF_TRANSCRIPTS
The path to the differential transcript results. Can
be used to determine --main-transcript-ids
--out-dir OUT_DIR The path to use as the output directory
--plot-file-type {.pdf,.png,all}
The file type for output plots (default .pdf))
--main-transcript-ids MAIN_TRANSCRIPT_IDS
A comma separated list of transcript IDs to plot as
the main transcripts. If not given then the most
significant isoform from --diff-transcripts, a second
significant isoform with a delta proportion in the
opposite direction, and the Ensembl canonical isoform
from --gencode-gtf will be used if possible
--max-transcripts MAX_TRANSCRIPTS
How many transcripts to plot individually. The
remaining transcripts in the gene will be grouped
together (max 5, default 5)
--intron-scaling INTRON_SCALING
The factor to use to reduce intron length in the plot.
A value of 2 would reduce introns to 1/2 of the
original plot length (default 1)
--group-1 GROUP_1 The path to a file listing the sample names for group
1. The file should have a single line with the sample
names as a comma separated list. The sample names
should match with the ESPRESSO abundance column names.
--group-2 GROUP_2 The path to a file listing the sample names for group
2.
--group-1-name GROUP_1_NAME
A name for group 1 (default group 1)
--group-2-name GROUP_2_NAME
A name for group 2 (default group 2)
scripts/classify_isoform_differences.py compares the structures of isoforms within a gene by calling scripts/FindAltTSEvents.py with a "main" isoform and a second isoform (or all other isoforms in the gene by default)
scripts/FindAltTSEvents.py compares the structures of any two transcript isoforms. Local differences in transcript structure are classified into 7 basic alternative splicing categories:
Any local differences in transcript structure that could not be classified as one of the 7 basic alternative splicing categories are classified as "complex" (COMPLEX). Note: It is possible to have combinations of alternative splicing events for any given pair of transcript isoforms.
The output is a tab-delimited file consisting of four fields:
Note: Designation of transcript isoforms 1 and 2 is completely arbitrary. Moreover, if the two transcript isoforms contained in the input GTF file exhibit a combination of multiple alternative splicing events, each event will be reported as its own line in the output file.
python classify_isoform_differences.py -h
usage: classify_isoform_differences.py [-h] --main-transcript-id
MAIN_TRANSCRIPT_ID --updated-gtf
UPDATED_GTF [--gencode-gtf GENCODE_GTF]
--out-tsv OUT_TSV
[--second-transcript-id SECOND_TRANSCRIPT_ID]
Compare the structures of isoforms within a gene
options:
-h, --help show this help message and exit
--main-transcript-id MAIN_TRANSCRIPT_ID
The transcript_id of the main isoform in the .gtf file
--updated-gtf UPDATED_GTF
The path to the updated.gtf file from ESPRESSO
--gencode-gtf GENCODE_GTF
The path to a gencode annotation.gtf file. Can be used
to compare against isoforms not detected by ESPRESSO
--out-tsv OUT_TSV The path of the output file
--second-transcript-id SECOND_TRANSCRIPT_ID
If given, only compare the main transcript to this
transcript
python FindAltTSEvents.py -h
usage: FindAltTSEvents.py [-h] -i /path/to/input/GTF -o /path/to/output/file
This is a script to enumerate all transcript structure differences between a
pair of transcript isoforms
options:
-h, --help show this help message and exit
-i /path/to/input/GTF
path to GTF file describing structures of two
transcript isoforms
-o /path/to/output/file
path to output file
Example data is provided in example/data.tar.gz. Unpack that file with:
cd example/
tar -xvf ./data.tar.gz
The unpacked files are:
example/gencode.v43.annotation_filtered.gtf
example/GRCh38.primary_assembly.genome_filtered.fa
example/group_1.txt
example/group_2.txt
example/gs689_1_filtered.sam
example/gs689_2_filtered.sam
example/gs689_3_filtered.sam
example/pc3e_1_filtered.sam
example/pc3e_2_filtered.sam
example/pc3e_3_filtered.sam
example/samples_N2_R0_abundance.esp
example/samples_N2_R0_updated.gtf
The example data is based on cell line data from https://doi.org/10.1126/sciadv.abq5072. The 1D cDNA sequencing for GS689 and PC3E was processed to get .sam files. The reference data (gencode .gtf and GRCh38 .fa) and the .sam files were filtered to a few different regions to get a small dataset
The first step is to run ESPRESSO using the provided reference data and alignment files. The result files from ESPRESSO are included in the example data
Next run scripts/rmats_long.py which will perform all of the analysis steps and write output files to ./example_out/
. It requires the sample names from the abundance file to be split into groups as done in group_1.txt
:
pc3e_1,pc3e_2,pc3e_3
and group_2.txt
:
gs689_1,gs689_2,gs689_3
Here is the main command:
python ./scripts/rmats_long.py --abundance ./example/samples_N2_R0_abundance.esp --updated-gtf ./example/samples_N2_R0_updated.gtf --gencode-gtf ./example/gencode.v43.annotation_filtered.gtf --group-1 ./example/group_1.txt --group-2 ./example/group_2.txt --group-1-name PC3E --group-2-name GS689 --out-dir ./example_out --plot-file-type .png
scripts/rmats_long.py will run other commands. For this example it first runs:
python ./scripts/detect_differential_isoforms.py --abundance ./example/samples_N2_R0_abundance.esp --out-dir ./example_out --group-1 ./example/group_1.txt --group-2 ./example/group_2.txt --adj-pvalue 0.05 --delta-proportion 0.1 --num-threads 1
That should print: found 9 isoforms from 4 genes with adj_pvalue <= 0.05 and abs(delta_isoform_proportion) >= 0.1
. One significant row from example_out/differential_transcripts_filtered.tsv
is:
gene_id feature_id lr df pvalue adj_pvalue pc3e_1_proportion pc3e_2_proportion pc3e_3_proportion gs689_1_proportion gs689_2_proportion gs689_3_proportion group_1_average_proportion group_2_average_proportion delta_isoform_proportion
ENSG00000204580.14 ENST00000418800.6 21.3599361248612 1 3.80642848651724e-06 1.27857268029356e-05 0.2476 0.3807 0.2559 0.0 0.0 0.0203 0.2947 0.0068 0.288
Next scripts/rmats_long.py will run a similar command to what is below (but using some temporary files):
python ./scripts/visualize_isoforms.py --gene-id ENSG00000204580.14 --abundance ./example/samples_N2_R0_abundance.esp --updated-gtf ./example/samples_N2_R0_updated.gtf --diff-transcripts ./example_out/differential_transcripts.tsv --out-dir ./example_out --group-1 ./example/group_1.txt --group-2 ./example/group_2.txt --group-1-name PC3E --group-2-name GS689 --plot-file-type .png --gencode-gtf ./example/gencode.v43.annotation_filtered.gtf
The --gene-id
is the significant gene which can be found in ./example_out/differential_transcripts_filtered.tsv
. The command will produce example_out/ENSG00000204580.14_abundance.png
:
And example_out/ENSG00000204580.14_structure.png
The plots show that ENST00000418800.6 is abundant in PC3E samples but not in GS689 samples. ENST00000376568.8 is the most abundant isoform in GS689 samples.
scripts/rmats_long.py will determine the differences among transcripts within that gene in terms of splicing events with:
python ./scripts/classify_isoform_differences.py --updated-gtf ./example/samples_N2_R0_updated.gtf --out-tsv ./example_out/ENSG00000204580.14_isoform_differences_ENST00000418800.6_to_ENST00000376568.8.tsv --main-transcript-id ENST00000418800.6 --second-transcript-id ENST00000376568.8 --gencode-gtf ./example/gencode.v43.annotation_filtered.gtf
ENST00000418800.6 is chosen as the main transcript because it is the most significant isoform for this gene from ./example_out/differential_transcripts.tsv
. ENST00000376568.8 is chosen as the second transcript because it is the most significant isoform with a delta proportion in the opposite direction of the main transcript for this gene
./example_out/ENSG00000204580.14_isoform_differences_ENST00000418800.6_to_ENST00000376568.8.tsv
shows that those two isoforms differ by an alternative first exon event and an exon skipping event. This can also be seen in the isoform structure plot:
transcript1 transcript2 event coordinates
ENST00000418800.6 ENST00000376568.8 AFE chr6:30884519:30884710:+;chr6:30882613:30882983:+
ENST00000418800.6 ENST00000376568.8 SE chr6:30895404:30895514:+
scripts/rmats_long.py also runs similar commands for the 3 other significant genes that were detected. A summary is written to ./example_out/summary.txt
:
## significant differential transcript usage
total significant isoforms: 9
total genes with significant isoforms: 4
adjusted pvalue threshold: 0.05
delta isoform proportion threshold: 0.1
## alternative splicing classifications between isoform pairs
total classified isoform pairs: 4
exon skipping: 1
alternative 5'-splice site: 0
alternative 3'-splice site: 0
mutually exclusive exons: 0
intron retention: 0
alternative first exon: 0
alternative last exon: 0
complex: 1
combinatorial: 2