Official pytorch implementation of "ControlVideo: Training-free Controllable Text-to-Video Generation"
ControlVideo adapts ControlNet to the video counterpart without any finetuning, aiming to directly inherit its high-quality and consistent generation
All pre-trained weights are downloaded to checkpoints/
directory, including the pre-trained weights of Stable Diffusion v1.5, ControlNet 1.0 conditioned on canny edges, depth maps, human poses, and ControlNet 1.1 in here.
The flownet.pkl
is the weights of RIFE.
The final file tree likes:
checkpoints
├── stable-diffusion-v1-5
├── sd-controlnet-canny
├── sd-controlnet-depth
├── sd-controlnet-openpose
├── ...
├── flownet.pkl
conda create -n controlvideo python=3.10
conda activate controlvideo
pip install -r requirements.txt
Note: xformers
is recommended to save memory and running time. controlnet-aux
is updated to version 0.0.6.
To perform text-to-video generation, just run this command in inference.sh
:
python inference.py \
--prompt "A striking mallard floats effortlessly on the sparkling pond." \
--condition "depth" \
--video_path "data/mallard-water.mp4" \
--output_path "outputs/" \
--video_length 15 \
--smoother_steps 19 20 \
--width 512 \
--height 512 \
--frame_rate 2 \
--version v10 \
# --is_long_video
where --video_length
is the length of synthesized video, --condition
represents the type of structure sequence,
--smoother_steps
determines at which timesteps to perform smoothing, --version
selects the version of ControlNet (e.g., v10
or v11
), and --is_long_video
denotes whether to enable efficient long-video synthesis.
"A charming flamingo gracefully wanders in the calm and serene water, its delicate neck curving into an elegant shape." | "A striking mallard floats effortlessly on the sparkling pond." | "A gigantic yellow jeep slowly turns on a wide, smooth road in the city." |
"A sleek boat glides effortlessly through the shimmering river, van gogh style." | "A majestic sailing boat cruises along the vast, azure sea." | "A contented cow ambles across the dewy, verdant pasture." |
"A young man riding a sleek, black motorbike through the winding mountain roads." | "A white swan movingon the lake, cartoon style." | "A dusty old jeep was making its way down the winding forest road, creaking and groaning with each bump and turn." |
"A shiny red jeep smoothly turns on a narrow, winding road in the mountains." | "A majestic camel gracefully strides across the scorching desert sands." | "A fit man is leisurely hiking through a lush and verdant forest." |
"James bond moonwalk on the beach, animation style." | "Goku in a mountain range, surreal style." | "Hulk is jumping on the street, cartoon style." | "A robot dances on a road, animation style." |
"A steamship on the ocean, at sunset, sketch style." | "Hulk is dancing on the beach, cartoon style." |
If you make use of our work, please cite our paper.
@article{zhang2023controlvideo,
title={ControlVideo: Training-free Controllable Text-to-Video Generation},
author={Zhang, Yabo and Wei, Yuxiang and Jiang, Dongsheng and Zhang, Xiaopeng and Zuo, Wangmeng and Tian, Qi},
journal={arXiv preprint arXiv:2305.13077},
year={2023}
}
This work repository borrows heavily from Diffusers, ControlNet, Tune-A-Video, and RIFE. The code of HuggingFace demo borrows from fffiloni/ControlVideo. Thanks for their contributions!
There are also many interesting works on video generation: Tune-A-Video, Text2Video-Zero, Follow-Your-Pose, Control-A-Video, et al.