GNN课程大作业,对
Graph Wavelet Neural Network. Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, Xueqi Cheng. ICLR, 2019. [Paper]
的复现,包含了Appendix D提到的利用Чебышёв多项式近似快速求小波基。
Python版本为3.7.5,主要包版本如下所示
cudatoolkit 10.1.243
numpy 1.17.3
pytorch 1.3.1
torchvision 0.4.2
scikit-learn 0.21.3
scipy 1.3.1
tensorboard 2.0.0
tensorflow 2.0.0
tensorflow-base 2.0.0
--dataset STR Which dataset to use. 'cora', 'citeseer' or 'pubmed'. Default is 'cora'.
--save-path STR Target directory for saving models. Default is './models'
--epochs INT Number of training epochs. Default is 200.
--hidden INT Number of units in hidden layer. Default is 16.
--weight-decay FLOAT Adam weight decay. Default is 5e-4.
--learning-rate FLOAT Learning rate. Default is 0.01.
--dropout FLOAT Dropout probability. Default is 0.5.
--approximation-order INT Chebyshev polynomial order. Default is 3.
--threshold FLOAT Sparsification parameter. Default is 1e-4.
--scale FLOAT Scaling parameter. Default is 1.0.
--fast BOOL Use fast graph wavelets with Chebyshev polynomial approximation.
python train.py --dataset cora --fast --approximation-order 3