Official code and models for the NeurIPS 2023 paper:
Multi-modal Queried Object Detection in the Wild
Yifan Xu, Mengdan Zhang, Chaoyou Fu, Peixian Chen, Xiaoshan Yang, Ke Li, Changsheng Xu
NeurIPS 2023
MQ-Det is the first multi-modal queried open-world object detector. If you have any questions, please feel free to raise an issue or email yifan.xu@nlpr.ia.ac.cn.
10/20/2023: Updated an instruction on modulating on customized datasets! Please refer to CUSTOMIZED_PRETRAIN.md.
10/09/2023: Complete code and models are released!
09/22/2023: MQ-Det has beed accepted by NeurIPS 2023 (Updated Verision).
05/30/2023: MQ-Det paper on arxiv https://arxiv.org/abs/2305.18980.
05/27/2023: Finetuning-free code and models are released.
05/25/2023: Project page built.
If you find our work useful in your research, please consider citing:
@article{xu2024multi,
title={Multi-modal queried object detection in the wild},
author={Xu, Yifan and Zhang, Mengdan and Fu, Chaoyou and Chen, Peixian and Yang, Xiaoshan and Li, Ke and Xu, Changsheng},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024}
}
We introduce MQ-Det, an efficient architecture and pre-training strategy design to utilize both textual description with open-set generalization and visual exemplars with rich description granularity as category queries, namely, Multi-modal Queried object Detection, for real-world detection with both open-vocabulary categories and various granularity.
MQ-Det incorporates vision queries into existing well-established language-queried-only detectors.
Features:
Environment. Init the environment:
git clone https://github.com/YifanXu74/MQ-Det.git
cd MQ-Det
conda create -n mqdet python=3.9 -y
conda activate mqdet
bash init.sh
The implementation environment in the paper is python==3.9, torch==2.0.1, GCC==8.3.1, CUDA==11.7. Several potential errors and their solutions are presented in DEBUG.md
Data. Prepare Objects365
(for modulated pre-training), LVIS
(for evaluation), and ODinW
(for evaluation) benchmarks following DATA.md.
Initial Weight. MQ-Det is build upon frozen language-queried detectors. To conduct modulated pre-training, download corresponding pre-trained model weights first.
We apply MQ-Det on GLIP and GroundingDINO:
GLIP-T:
wget https://huggingface.co/GLIPModel/GLIP/resolve/main/glip_tiny_model_o365_goldg_cc_sbu.pth -O MODEL/glip_tiny_model_o365_goldg_cc_sbu.pth
GLIP-L:
wget https://huggingface.co/GLIPModel/GLIP/resolve/main/glip_large_model.pth -O MODEL/glip_large_model.pth
GroundingDINO-T:
wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth -O MODEL/groundingdino_swint_ogc.pth
If the links fail, please manually download corresponding weights from the following table or the github pages of GLIP/GroundingDINO.
GLIP-T | GLIP-L | GroundingDINO-T |
---|---|---|
weight | weight | weight |
The weight files should be placed as follows:
MODEL/
glip_tiny_model_o365_goldg_cc_sbu.pth
glip_large_model.pth
groundingdino_swint_ogc.pth
The table reports the finetuning-free performance with 5 vision queries. Model | LVIS MiniVal | LVIS Val v1.0 | ODinW-13 | ODinW-35 | Config | Weight |
---|---|---|---|---|---|---|
MQ-GLIP-T | 30.4 | 22.6 | 45.6 | 20.8 | config | weight |
MQ-GLIP-L | 43.4 | 34.7 | 54.1 | 23.9 | config | weight |
Take MQ-GLIP-T as an example.
If you wish to extract vision queries from custom dataset, specify the DATASETS.TRAIN
in the config file.
We provide some examples in our implementation in the following.
python tools/extract_vision_query.py --config_file configs/pretrain/mq-glip-t.yaml --dataset objects365 --add_name tiny
This will generate a query bank file in MODEL/object365_query_5000_sel_tiny.pth
python tools/extract_vision_query.py --config_file configs/pretrain/mq-glip-t.yaml --dataset lvis --num_vision_queries 5 --add_name tiny
This will generate a query bank file in MODEL/lvis_query_5_pool7_sel_tiny.pth
.
python tools/extract_vision_query.py --config_file configs/pretrain/mq-glip-t.yaml --dataset odinw-13 --num_vision_queries 5 --add_name tiny
This will generate query bank files for each dataset in ODinW in MODEL/{dataset}_query_5_pool7_sel_tiny.pth
.
The above script has already set all paramters well. One only needs to pass:
--config_file
is the pretraining config files.
--dataset
contains some pre-defined datasets including objects365
, lvis
, odinw-13
, and odinw-35
.
--num_vision_queries
controls the number of vision queries for each category you want to extract from the training dataset, and can be an arbitrary number. This will set both VISION_QUERY.MAX_QUERY_NUMBER
and DATASETS.FEW_SHOT
to num_vision_queries
.
Note that here DATASETS.FEW_SHOT
is only for accelerating the extraction process.
--add_name
is only a mark for different models.
For training/evaluating with MQ-GLIP-T/MQ-GLIP-L/MQ-GroundingDINO, we set --add_name
to 'tiny'/'large'/'gd'.
For customized usage, one can modify the commands in the script, or pass additional parameters through --opt
, for example,
python tools/extract_vision_query.py --config_file configs/pretrain/mq-glip-t.yaml --dataset lvis --opt 'VISION_QUERY.MAX_QUERY_NUMBER 50 DATASETS.FEW_SHOT 50'
Here are several parameters may be used during query extraction, more details can be found in the code:
DATASETS.FEW_SHOT
: if set k>0
, the dataset will be subsampled to k-shot for each category when initializing the dataset. This is completed before training. Not used during pre-training.
VISION_QUERY.MAX_QUERY_NUMBER
: the max number of vision queries for each category when extracting the query bank. Only used during query extraction. Note that the query extraction is conducted before training and evaluation.
VISION_QUERY.NUM_QUERY_PER_CLASS
controls how many queries to provide for each category during one forward process in training and evaluation. Not used during query extraction.
Usually, we set
VISION_QUERY.MAX_QUERY_NUMBER=5000
, VISION_QUERY.NUM_QUERY_PER_CLASS=5
, DATASETS.FEW_SHOT=0
during pre-training.
VISION_QUERY.MAX_QUERY_NUMBER=k
, VISION_QUERY.NUM_QUERY_PER_CLASS=k
, DATASETS.FEW_SHOT=k
during few-shot (k-shot) fine-tuning.
Take MQ-GLIP-T as an example.
python -m torch.distributed.launch --nproc_per_node=8 tools/train_net.py --config-file configs/pretrain/mq-glip-t.yaml --use-tensorboard OUTPUT_DIR 'OUTPUT/MQ-GLIP-TINY/'
To conduct pre-training, one should first extract vision queries before start training following the above instruction.
To pre-train on custom datasets, please specify DATASETS.TRAIN
and VISION_SUPPORT.SUPPORT_BANK_PATH
in the config file. More details can be found in CUSTOMIZED_PRETRAIN.md.
Take MQ-GLIP-T as an example.
MiniVal:
python -m torch.distributed.launch --nproc_per_node=4 \
tools/test_grounding_net.py \
--config-file configs/pretrain/mq-glip-t.yaml \
--additional_model_config configs/vision_query_5shot/lvis_minival.yaml \
VISION_QUERY.QUERY_BANK_PATH MODEL/lvis_query_5_pool7_sel_tiny.pth \
MODEL.WEIGHT ${model_weight_path} \
TEST.IMS_PER_BATCH 4
Val 1.0:
python -m torch.distributed.launch --nproc_per_node=4 \
tools/test_grounding_net.py \
--config-file configs/pretrain/mq-glip-t.yaml \
--additional_model_config configs/vision_query_5shot/lvis_val.yaml \
VISION_QUERY.QUERY_BANK_PATH MODEL/lvis_query_5_pool7_sel_tiny.pth \
MODEL.WEIGHT ${model_weight_path} \
TEST.IMS_PER_BATCH 4
Please follow the above instruction to extract corresponding vision queries. Note that --nproc_per_node
must equal to TEST.IMS_PER_BATCH
.
python tools/eval_odinw.py --config_file configs/pretrain/mq-glip-t.yaml \
--opts 'MODEL.WEIGHT ${model_weight_path}' \
--setting finetuning-free \
--add_name tiny \
--log_path 'OUTPUT/odinw_log/'
The results are stored at OUTPUT/odinw_log/
.
If you wish to use custom vision queries or datasets, specify --task_config
and --custom_bank_path
. The task_config
should be like the ones in ODinW configs, and make sure DATASETS.TRAIN_DATASETNAME_SUFFIX
to be "_vision_query" to enable the dataset with vision queries. The custom_bank_path
should be extracted following the instruction. For example,
python tools/eval_odinw.py --config_file configs/pretrain/mq-glip-t.yaml \
--opts 'MODEL.WEIGHT ${model_weight_path}' \
--setting finetuning-free \
--add_name tiny \
--log_path 'OUTPUT/custom_log/'
--task_config ${custom_config_path}
--custom_bank_path ${custom_bank_path}
Take MQ-GLIP-T as an example.
python tools/eval_odinw.py --config_file configs/pretrain/mq-glip-t.yaml \
--opts 'MODEL.WEIGHT ${model_weight_path}' \
--setting 3-shot \
--add_name tiny \
--log_path 'OUTPUT/odinw_log/'
This command will first automatically extract the vision query bank from the (few-shot) training set. Then conduct fine-tuning.
If you wish to use custom vision queries, add 'VISION_QUERY.QUERY_BANK_PATH custom_bank_path'
to the --opts
argment, and also modify the dataset_configs
in the tools/eval_odinw.py
.
If set VISION_QUERY.QUERY_BANK_PATH
to ''
, the model will automatically extract the vision query bank from the (few-shot) training set before fine-tuning.
Note that current code does not support GroundingDINO for few-shot fine-tuning. Please try modulated pre-training and finetuning-free evaluation.
Here we provide introduction on utilizing single modal queries, such as visual exemplars or textual description.
Follow the command as in Finetuning-free Evaluation
. But set the following hyper-parameters.
To solely use vision queries, add hyper-parameters:
VISION_QUERY.MASK_DURING_INFERENCE True VISION_QUERY.TEXT_DROPOUT 1.0
To solely use language queries, add hyper-parameters:
VISION_QUERY.ENABLED FALSE
For example, to solely use vision queries,
python -m torch.distributed.launch --nproc_per_node=4 \
tools/test_grounding_net.py \
--config-file configs/pretrain/mq-glip-t.yaml \
--additional_model_config configs/vision_query_5shot/lvis_minival.yaml \
VISION_QUERY.QUERY_BANK_PATH MODEL/lvis_query_5_pool7_sel_tiny.pth \
MODEL.WEIGHT ${model_weight_path} \
TEST.IMS_PER_BATCH 4 \
VISION_QUERY.MASK_DURING_INFERENCE True VISION_QUERY.TEXT_DROPOUT 1.0
python tools/eval_odinw.py --config_file configs/pretrain/mq-glip-t.yaml \
--opts 'MODEL.WEIGHT ${model_weight_path} VISION_QUERY.MASK_DURING_INFERENCE True VISION_QUERY.TEXT_DROPOUT 1.0' \
--setting finetuning-free \
--add_name tiny \
--log_path 'OUTPUT/odinw_vision_log/'