Yijia-Xiao / Know2BIO

Know2BIO: A Comprehensive Dual-View Benchmark for Evolving Biomedical Knowledge Graphs
Creative Commons Zero v1.0 Universal
10 stars 4 forks source link
benchmark biomedical knowledge-graph


Know2BIO

Know2BIO is a comprehensive biomedical knowledge graph harmonizing heterogeneous database sources.

Getting Started

Environment Setup

We recommend using Anaconda3 to manage the environment.

Hardware Requirements

Benchmarking

Setup

Experiments

Knowledge Graph Embedding

options: -h, --help show this help message and exit --dataset {ontology,instance,whole} Knowledge Graph dataset: ontology, instance, whole views --model {TransE,TransR,DistMult,CP,MurE,RotE,RefE,AttE,RotH,RefH,AttH,ComplEx,RotatE} Knowledge Graph embedding model --optimizer {Adagrad,Adam,SparseAdam} Optimizer --max_epochs MAX_EPOCHS Maximum number of epochs to train for --patience PATIENCE Number of epochs before early stopping --valid VALID Number of epochs before validation --rank RANK Embedding dimension --batch_size BATCH_SIZE Batch size --neg_sample_size NEG_SAMPLE_SIZE Negative sample size, -1 to not use negative sampling --dropout DROPOUT Dropout rate --init_size INIT_SIZE Initial embeddings' scale --learning_rate LEARNING_RATE Learning rate


- Example: Train TransE model on Know2BIO's whole view
```bash
CUDA_VISIBLE_DEVICES=0 python main.py --model TransE --dataset whole --valid 10 --patience 5 --rank 512 --neg_sample_size 150 --optimizer Adam --learning_rate 0.001

Code and README for the benchmarking Know2BIO can be found in benchmark.

Dataset Construction

Dataset Schema

Know2BIO Schema

Data Source and Relationships

Know2BIO Data Source

Usage and Datasheet

Code and README for the construction of Know2BIO can be found in dataset.