# Create a conda environment and activate it
conda env create --file environments.yaml
conda activate RestorerID
# Install xformers
conda install xformers -c xformers/label/dev
# Install taming-transfomers
pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
pip install -e .
FFHQ
VGGFace2
Celeb-Ref
# You can download the pretrained model from hugging-face and put it in ckpt path: ckpt/RestorerIDFull.ckpt
[RestorerID-huggingface](https://huggingface.co/YingJiacheng/RestorerID/)
# run
bash inference.sh
or
CUDA_VISIBLE_DEVICES=0 python scripts/Inference.py --LQpath TestSamples/1/lq1.png --Refpath TestSamples/1/ref1.png --Outputpath Results/1/
# First train base model
# download sdv15 pretrained model (runwayml/v1-5-pruned.ckpt) from huggingface, put into the ckpt path as: ckpt/v1-5-pruned.ckpt
# prepare your datasets
CUDA_VISIBLE_DEVICES=0,1 python train_basemodel.py --train --base configs/v15/v15-BaseModel.yaml --name v15_basemodel --scale_lr False
# Then train RestorerID
# rename your trained base model and put to ckpt path as: ckpt/basemodel.ckpt
# download ID model ip-adapter-faceid-plus_sd15.bin from [IPAdapter-huggingface](https://huggingface.co/h94/IP-Adapter-FaceID/tree/main), put it into the ckpt path as: ckpt/ip-adapter-faceid-plus_sd15.bin
# prepare your datasets
# combine basemodel with ID model
python Combineckpt.py
CUDA_VISIBLE_DEVICES=0,1 python train_RestorerID.py --train --base configs/v15/v15-RestorerID.yaml --name RestorerID --scale_lr False
This project is released under the Apache 2.0 license.
This work is mainly based on StableSR, IPAdapter, we thank the authors for the contribution.