YingkunZhou / EdgeTransformerBench

edge/mobile transformer based Vision DNN inference benchmark
Apache License 2.0
14 stars 2 forks source link

EdgeTransformerPerf (ETBench)

Edge/mobile CNN+Transformer hybrid DNN backbone inference benchmark (currently only for computer vision task)

we filter the model which satisfy one of the condition below:

Model Top-1 Top-1
//20 est.
Top-1
//50 est.
#params GMACs wight
efficientformerv2_s0 76.2 76.3 76.0 3.5M 0.40G eformer_s0_450.pth
efficientformerv2_s1 79.7 78.8 79.6 6.1M 0.65G eformer_s1_450.pth
efficientformerv2_s2 82.0 82.0 81.9 12.6M 1.25G eformer_s2_450.pth
SwiftFormer_XS 75.7 76.1 75.3 3.5M 0.4G SwiftFormer_XS_ckpt.pth
SwiftFormer_S 78.5 78.3 78.3 6.1M 1.0G SwiftFormer_S_ckpt.pth
SwiftFormer_L1 80.9 80.7 81.8 12.1M 1.6G SwiftFormer_L1_ckpt.pth
EMO_1M 71.5 70.7 68.3 1.3M 0.26G EMO_1M.pth
EMO_2M 75.1 74.8 73.6 2.3M 0.44G EMO_2M.pth
EMO_5M 78.4 78.2 77.6 5.1M 0.90G EMO_5M.pth
EMO_6M 79.0 79.2 77.9 6.1M 0.96G EMO_6M.pth
edgenext_xx_small 71.2 70.8 70.4 1.3M 0.26G edgenext_xx_small.pth
edgenext_x_small 74.9 74.9 74.9 2.3M 0.54G edgenext_x_small.pth
edgenext_small/usi 81.1 80.8 80.0 5.6M 1.26G edgenext_small_usi.pth
mobilevitv2_050 70.2 69.9 66.7 1.4M 0.5G mobilevitv2-0.5.pt
mobilevitv2_075 75.6 75.0 74.4 2.9M 1.0G mobilevitv2-0.75.pt
mobilevitv2_100 78.1 77.9 76.9 4.9M 1.8G mobilevitv2-1.0.pt
[x] mobilevitv2_125 79.7 79.1 80.7 7.5M 2.8G mobilevitv2-1.25.pt
[x] mobilevitv2_150 81.5 80.8 81.8 10.6M 4.0G mobilevitv2-1.5.pt
[x] mobilevitv2_175 81.9 80.8 81.1 14.3M 5.5G mobilevitv2-1.75.pt
[x] mobilevitv2_200 82.3 82.0 83.1 18.4M 7.2G mobilevitv2-2.0.pt
mobilevit_xx_small 68.9 68.9 66.6 1.3M 0.36G mobilevit_xxs.pt
mobilevit_x_small 74.7 74.3 73.9 2.3M 0.89G mobilevit_xs.pt
mobilevit_small 78.2 77.7 78.1 5.6M 2.0 G mobilevit_s.pt
LeViT_128S 76.5 75.9 76.2 7.8M 0.30G LeViT-128S.pth
LeViT_128 78.6 79.3 78.2 9.2M 0.41G LeViT-128.pth
LeViT_192 79.9 79.8 79.3 11 M 0.66G LeViT-192.pth
[x] LeViT_256 81.6 81.2 81.4 19 M 1.12G LeViT-256.pth

Traditional CNN

Model Top-1 Top-1
//20 est.
Top-1
//50 est.
#params GMACs wight
resnet50 80.4 80.3 81.1 25.6M 4.1G
mobilenetv3_large_100 75.8 75.7 75.3 5.5M 0.29G
tf_efficientnetv2_b0 78.4 78.1 76.7 7.1M 0.72G
tf_efficientnetv2_b1 79.5 79.3 79.4 8.1M 1.2G
tf_efficientnetv2_b2 80.2 81.7 80.4 10.1M 1.7G
tf_efficientnetv2_b3 81.6 81.9 82.0 14.4M 3.0G