Hi, I download the full version cross-site prostate dataset (HK and BIDMC) provided in README, then run python main.py, and the testing results are:
Training Done! Start testing
=> Loading checkpoint 'log/1109/prostate_8bc_lr1e-3_UNetODADA_3step121_GC_C/2018/folder3/UNet_DA_loss_MedT/best_score_2018_checkpoint.pth.tar'
=> Loaded saved the best model at (epoch 315)
100%|██████████████████████████████████████████████████████████████████████████████| 22/22 [00:00<00:00, 26.47it/s]
avg_surf_dist_3D: (0.36792447706956555, 0.2899364095854785)
hd_dist_95_3D: 2.0
surface_overlap_3D: (0.9138823276712713, 0.9249319974762614)
surface_dice_3D: 0.919245792444278
volume_dice_3D: 0.889567523506653
The mean asd_2D: 2.6425; The ads_2D std: 1.0628
The mean dice: 0.9230; The dice std: 0.0545
The mean IoU: 0.7537; The IoU std: 0.1504
The mean ACC: 0.9913; The ACC std: 0.0038
The mean sensitive: 0.9056; The sensitive std: 0.0592
The mean specificy: 0.9947; The specificy std: 0.0043
The mean precision: 0.8234; The precision std: 0.1692
The mean f1_score: 0.8506; The f1_score std: 0.1080
The mean Jaccard_M: 0.7542; The Jaccard_M std: 0.1504
The mean Jaccard_N: 0.9910; The Jaccard_N std: 0.0039
The mean Jaccard: 0.7542; The Jaccard std: 0.1504
The mean dc: 0.8506; The dc std: 0.1080
The inference time: 0.2975
Number of trainable parameters 60568132 in Model UNet_DA
100%|██████████████████████████████████████████████████████████████████████████████| 11/11 [00:00<00:00, 35.44it/s]
avg_surf_dist_3D: (0.8326537194762975, 0.7805250157971086)
hd_dist_95_3D: 3.1622776601683795
surface_overlap_3D: (0.7670339066074607, 0.7540540050210169)
surface_dice_3D: 0.7605979811923145
volume_dice_3D: 0.8009900649730138
The mean asd_2D: 3.8848; The ads_2D std: 1.3398
The mean dice: 0.8838; The dice std: 0.0518
The mean IoU: 0.6407; The IoU std: 0.1330
The mean ACC: 0.9895; The ACC std: 0.0032
The mean sensitive: 0.8097; The sensitive std: 0.1096
The mean specificy: 0.9933; The specificy std: 0.0029
The mean precision: 0.7475; The precision std: 0.1224
The mean f1_score: 0.7730; The f1_score std: 0.1025
The mean Jaccard_M: 0.6411; The Jaccard_M std: 0.1330
The mean Jaccard_N: 0.9893; The Jaccard_N std: 0.0032
The mean Jaccard: 0.6411; The Jaccard std: 0.1330
The mean dc: 0.7730; The dc std: 0.1025
The inference time: 0.1452
Number of trainable parameters 60568132 in Model UNet_DA
Testing Done!
The upper part is for test dataset a, i.e. BIDMC, while the lower part is test dataset b, i.e. HK. The lower part doesn't fully match the results reported in table 1 in the paper. For example:
sensivitity (0.8097 in output v.s. 87.43 in paper table 1)
Hi, I download the full version cross-site prostate dataset (HK and BIDMC) provided in README, then run
python main.py
, and the testing results are:The upper part is for test dataset a, i.e. BIDMC, while the lower part is test dataset b, i.e. HK. The lower part doesn't fully match the results reported in table 1 in the paper. For example: