YuboZhangPKU / ERICA

GNU General Public License v3.0
18 stars 0 forks source link

ERICA

Evolutionary Relationship Inference using a CNN-based Approach

Usage

The ERICA pipeline consists of 3 steps:

  1. Generating custom sequence files
  2. Evaluating evolutionary relationships
  3. Finding discordant patterns and signatures of genome-wide and local introgression

Compilation

Generating custom sequence files

ERICA uses a multiple sequence alignment (MSA) as input to evaluate evolutionary relationships. A DNA sequence alignment without any other annotation should be provided. Adjacent eight lines will be recognized as belonging to one taxon. Thus, MSAs containing 32 and 40 lines are required for the four-taxon and five-taxon analyses, respectively.

A demo of 8 sequence alignment:

TGGATTCGTCCGCCCAGGCACATCACAGAGCAATCAGACCTCGCAAACTA
TGGTTTCGTCCGCTCAGGCACATCACTGAGCAATCAGACCTCGCAAACTA
TGGTTTCGTCCGCCCAGGCACATCACAGAGCAATCAGACCTCGCNTACTA
TGGNTTCGTCCGCCCAGGCACATCACTGAGCAATCAGACCTCGCAAACTA
TGGTTTCGTCCGCTCAGGCACATCACTGAGCAATCAGACCTCGCAAACTA
TGGTTTCGTCCGCCCAGGCACATCACTGAGCAATCAGACCTCCCAAACTA
TGGATTCGTCCGCCCAGGCACNTCACTGAGCAATCAGACCTCGCATACTA
TGGATTCGTCCGCCCAGGCACATCACTGAGCAATCAGACCTCGCAAACTA

Users can use algorithms such as Clustal W or LASTZ for whole genome alignment. For a population-level study, genotype data storing in the format of Variant Call Format (VCF) can be used. Users can use vcf2MSA.py to convert custom VCF files to MSA format.

An example of VCF:

##fileformat=VCFv4.2
#CHROM  POS     ID      REF     ALT     QUAL    FILTER  INFO    FORMAT  H_m_amaryllis_1 H_m_amaryllis_2 H_ethilla_1     H_ethilla_2     H_ethilla_3     H_ethilla_4     H_m_amaryllis_3 H_m_amaryllis_4      H_t_thelxinoe_1 H_t_thelxinoe_2 H_t_thelxinoe_3 H_t_thelxinoe_4 H_m_aglaope_1   H_m_aglaope_2   H_m_aglaope_3   H_m_aglaope_4
Hmel218003o     7295    .       A       T       138.17  .       .     GT:AD:DP:GQ:PL  0/0:14,0:14:36:0,36,491 0/0:10,0:10:24:0,24,332 0/0:24,0:24:63:0,63,827      0/1:6,6:12:99:150,0,194 0/0:13,0:13:39:0,39,512 0/0:26,0:26:66:0,66,880 0/0:20,0:20:60:0,60,742 0/0:33,0:33:99:0,99,1210        0/0:34,0:34:90:0,90,1198        0/0:23,0:23:69:0,69,912      0/0:25,0:25:69:0,69,953 0/0:19,0:19:54:0,54,752 ./.:.:.:.:.     ./.:.:.:.:.     0/0:10,0:11:3:0,3,28    ./.:.:.:.:.
Hmel218003o     7315    .       G       C       27719.2 .       .      GT:AD:DP:GQ:PL  0/0:19,1:20:12:0,12,639 0/1:7,15:22:99:408,0,230        ./.:.:.:.:. ./.:.:.:.:.      ./.:.:.:.:.     ./.:.:.:.:.     0/1:15,10:25:99:251,0,442       0/0:27,0:27:78:0,78,944 1/1:1,29:30:84:1113,84,0        1/1:0,21:22:60:808,60,0 1/1:0,25:25:66:901,66,0 1/1:0,24:24:66:907,66,0      ./.:.:.:.:.     1/1:6,6:13:12:137,12,0  1/1:7,4:12:9:80,9,0     ./.:.:.:.:.
Hmel218003o     7319    .       T       A       1723.26 .       .     GT:AD:DP:GQ:PL  0/0:21,1:22:18:0,18,711 0/1:7,15:22:99:408,0,236        0/0:23,0:23:69:0,69,853      0/0:13,0:13:36:0,36,438 0/0:14,0:14:36:0,36,480 0/0:29,0:29:84:0,84,1058        0/1:15,10:25:99:263,0,443       0/0:29,0:29:84:0,84,1024        0/0:31,0:31:84:0,84,1139    0/0:23,0:23:69:0,69,930  0/0:26,0:26:69:0,69,945 0/0:24,0:24:66:0,66,910 ./.:.:.:.:.     0/1:7,7:15:10:156,0,10  1/1:9,4:13:9:80,9,0     ./.:.:.:.:.
Hmel218003o     7335    .       C       G       40227.2 .       .   GT:AD:DP:GQ:PL  1/1:1,16:17:9:580,9,0   0/1:16,8:24:99:264,0,410        1/1:0,20:20:60:742,60,0      1/1:0,13:13:39:456,39,0 1/1:0,12:12:30:393,30,0 1/1:0,28:28:81:1017,81,0        0/1:13,10:23:99:255,0,376       1/1:0,29:29:84:1016,84,0        1/1:0,30:30:87:1123,87,0    1/1:0,23:23:60:790,60,0  1/1:0,25:25:69:913,69,0 1/1:0,23:23:66:878,66,0 ./.:.:.:.:.     0/1:7,9:16:10:10,0,156  0/0:7,10:17:18:0,18,174 ./.:.:.:.:.
Hmel218003o     7342    .       C       T       7335.32 .       .      GT:AD:DP:GQ:PL  1/1:1,15:16:6:540,6,0   0/1:17,8:25:99:269,0,449        0/0:23,0:23:69:0,69,849      0/0:12,0:12:36:0,36,417 0/0:12,0:12:30:0,30,385 0/0:26,0:26:78:0,78,981 0/1:15,11:26:99:278,0,384       1/1:0,28:28:81:976,81,0 0/0:30,0:30:81:0,81,1086        0/0:23,0:24:63:0,63,804      0/0:25,0:25:66:0,66,856 0/0:25,0:25:69:0,69,908 ./.:.:.:.:.     0/1:7,9:16:10:10,0,160  0/0:10,8:18:24:0,24,253 ./.:.:.:.:.

Evaluating evolutionary relationships

For each MSA, we focus on the topology of its phylogenetic tree. Taking a four-taxon phylogeny for example, which contains three ingroup taxa and one outgroup taxon, there are three possible topological structures:

             /-P1                        /-P1                       /-P2
          /-|                         /-|                        /-|
       /-|   \-P2                  /-|   \-P3                 /-|   \-P3
      |  |                        |  |                       |  |      
    --|   \-P3                  --|   \-P2                 --|   \-P1
      |                           |                          |
       \-O                         \-O                        \-O

        Topo A                      Topo B                      Topo C
       (1,0,0)                   (0,1,0)                   (0,0,1)

However, one strict bifurcated tree cannot represent the real relationship of the ingroup taxa, especially when a focal taxon is not a monophyletic group or a focal region has multiple evolutionary histories. Thus, we generated training datasets for the CNN models by quantifying the proportion of each possible topology for MSA segments representing multiple evolutionary scenarios and encoded each MSA segment with a three-dimensional vector satisfying sum-to-one constraints.

Similarly, there are fifteen possible topologies for a five-taxon case, with twelve asymmetric and three symmetric topologies.

Class Topology
A ((((P1, P2), P3), P4), O)
B ((((P1, P3), P2), P4), O)
C ((((P2, P3), P1), P4), O)
D ((((P2, P3), P4), P1), O)
E ((((P2, P4), P3), P1), O)
F ((((P3, P4), P2), P1), O)
G ((((P1, P3), P4), P2), O)
H ((((P1, P4), P3), P2), O)
I ((((P3, P4), P1), P2), O)
J ((((P1, P2), P4), P3), O)
K ((((P1, P4), P2), P3), O)
L ((((P2, P4), P1), P3), O)
M (((P1, P2), (P3, P4)), O)
N (((P1, P3), (P2, P4)), O)
O (((P1, P4), (P2, P3)), O)

We have two trained CNN models covering most of the evolutionary scenarios. Scripts ERICAPrediction.py can be used to predict topology probabilities for genomic data with a step window size of 5 kb.

Finding introgressed loci

According to the relationships inferred by the CNN models, we can identify the introgressed regions via discordance between gene trees and species trees. The gene flow between non-sister species can change the topological structures, and the new topology depends on the species tree and direction of gene flow.

However, both introgression and incomplete lineage sorting (ILS) can lead to discordant patterns. To distinguish signatures of introgression from ILS, we evaluated the theoretical distributions of topological discordance caused by ILS on the simulated data (see our paper for more details). We chose 0.4 as a threshold for 50 kb windows to make a false-positive rate (FPR) less than 5%.

The scripts ERICAVisualization.py can be used to filter results by default or according to a user-defined threshold and plot topology proportions across the interesting regions.

Usage Details

Getting Started

Download
git clone https://github.com/YuboZhangPKU/ERICA.git
cd ERICA
Hardware and Software Requirements

Running ERICA pipeline requires only a standard computer with enough RAM, which is related to data size. The minimal requirement is about 3.3 GB of RAM.
Both CPUs and GPUs could be used, but GPUs significantly speed up the prediction step when compared to CPUs.

The following table shows the time and memory cost in prediction step for MSAs of different length: Model 100 kb 1 Mb 10 Mb 100 Mb
Four taxon model (GPU) 0:29(3.3 Gb) 0:26(3.4 Gb) 1:37(4.5 Gb) 14:01(31.2 Gb)
Five taxon model (GPU) 0:45(3.3 Gb) 0:53(3.5 Gb) 2:37(5.3 Gb) 20:40(38.7 Gb)
Four taxon model (CPU) 2:25 17:43 165:57 1077:21
Five taxon model (CPU) 1:55 9:36 86:46 857:31

(Times are minutes: seconds. Ran on one NVIDIA Tesla V100 SXM2 32GB GPU or two Intel Xeon E5-2680v3 CPUs using 20 threads)

The pipeline has been tested on the following systems:
Linux: CentOS 7.5 and Gentoo 4.14

ERICA pipeline requires python version 3.6 or higher, and packages tensorflow and plotnine. For using NVIDIA GPU, CUDA and cuDNN are also required.

The following commands can create an environment using Anaconda:
conda create --name ERICA python=3.6 tensorflow=2.1.0 plotnine=0.6.0
or for GPU version:
conda create --name ERICA python=3.6 tensorflow-gpu==2.1.0 cudatoolkit cudnn plotnine=0.6.0

Testing ERICA
source activate ERICA
./test.sh

Converting VCF to MSA

The script vcf2MSA.py generates alignments of individual re-sequencing data from single nucleotide variations (SNVs) recorded in a VCF file and the corresponding reference sequences in the fasta format. Small insertions and deletions (INDELs) should be removed in advance to avoid sequence length variations.

For different situations and hypotheses, four or five populations can be included, with the arguments--pop4 or --pop5 appointing the outgroup, respectively.

The program is designed for the diploid genome and insensitive to the order of alleles. Both phased and unphased genotype data can be used. If the --format argument followed by the diplo parameter, a pair of sequences will be generated with one sequence recording the allele in the first column, and another recording the second allele. Instead, if the parameter is haplo, only one allele will be randomly retained and written into a sequence. Therefore, you can choose up to 4 or 8 individuals for each population, respectively. Note that it's not necessary to provide the maximum number of samples, the program can work with at least one individual per population, by randomly duplicating sequences of given individuals.

The script will output an MSA file for each scaffold in the reference sequences. Users can use --include or --exclude arguments to specify the scaffolds for analyses.

vcf2MSA.py has the following options:

An example is provided in test and the result in test_result.

The command lines for using vcf2MSA.py are:

# four-taxon model 
python vcf2MSA.py \
-i test/pop_test.vcf.gz \
-r test/pop_test.fasta \
-o test/pop_test \
-f diplo \
-P1 H_m_aglaope_1,H_m_aglaope_2,H_m_aglaope_3,H_m_aglaope_4 \
-P2 H_m_amaryllis_1,H_m_amaryllis_2,H_m_amaryllis_3,H_m_amaryllis_4 \
-P3 H_t_thelxinoe_1,H_t_thelxinoe_2,H_t_thelxinoe_3,H_t_thelxinoe_4 \
-P4 H_ethilla_1,H_ethilla_2,H_ethilla_3,H_ethilla_4

# five-taxon model
python vcf2MSA.py \
-i test/five_pop_test.vcf.gz \
-r test/five_pop_test.fasta \
-o test/five_pop_test \
-f haplo \
-P1 GP39,GP77,GP536,GP640,GP761-1 \
-P2 Nipponbare,HP14,HP44,HP48,HP314,HP103,HP45,UR28 \
-P3 W1943,W3095-2,Orufi,W3078-2 \
-P4 W0170,W1698,W1754,W0123-1,Oniva \
-P5 Obart

Using the trained CNN models

As mentioned above, the script ERICAPrediction.py use 32 or 40 sequence alignments as input, and the --Input argument specifies the path of input MSA files. If the path is a directory, all of the files that existed in this directory will be analyzed. The parameter after the argument --Tasks specifies the number of jobs running in parallel. The output of vcf2MSA.py can be used as input in this step directly.

The program requires the model multiprocessing and tensorflow.

ERICAPrediction.py has the following options:

The command lines for analyzing the example data are:

# four-taxon model 
python ERICAPrediction.py -i test/pop_test_Hmel218003o.txt -o test/pop_test_Hmel218003o_res.txt -p 4

# five-taxon model
python ERICAPrediction.py -i test/five_pop_test_10.txt -o test/five_pop_test_10_res.txt -p 5 

The output file contains three or fifteen columns as the probabilities of each topology, and each line shows a result of a non-overlapped 5 kb window. An example results of four-taxon model:

0.2865   0.2967  0.4167  
0.5867   0.2538  0.1595  
0.7229   0.1028  0.1743  
0.5597   0.2222  0.2181  
0.5604   0.2345  0.2051

Post-processing and visualization

The script ERICAVisualization.py uses topology proportions as input and plot topologies along a chromosome or given regions. The topology with the highest proportion or greater than a predefined threshold will be recorded, to suggest the putative loci of introgression.

The relationships between colors in output plots and topology follow:

The program requires model plotnine and pandas.

The program has the following options:

The following commands can be used to calculate the mean value for each 10 kb window, and to visualize the result.

# four-taxon model
python ERICAVisualization.py \
-i test/pop_test_Hmel218003o_res.txt \
-o test/pop_test_Hmel218003o_10k \
-p 4 \
-w 10000 \
-c Hmel218003o \
-r 1:200 \
-d 0.5

# five-taxon model
python ERICAVisualization.py \
-i test/five_pop_test_10_res.txt \
-o test/five_pop_test_10_10k \
-p 5 \
-w 10000 \
-c Chr10 \
-r 1:200 \
-d 0.5

An example of output CSV file pop_test_Hmel218003o_10k.csv records the topology proportions and category information.

Chr Index A B C CminusB Max Value Max Class Distance Class
Hmel218003o 1 0.4366 0.2752 0.2881 0.0129 0.4366 A ?
Hmel218003o 10001 0.6413 0.1625 0.1962 0.0337 0.6413 A A
Hmel218003o 20001 0.7142 0.1474 0.1383 -0.0092 0.7142 A A
Hmel218003o 30001 0.6077 0.1448 0.2475 0.1027 0.6077 A A

The line plot likes this:

And the area plot likes this:

Training a specialization model (optional)

Custom data could be used to train the CNNs to further improve accuracy. The script ERICAModelTraining.py uses MSA files and data labels with the same format as described above as input to train the models from scratch or fine-tune the pre-trained models.

ERICAModelTraining.py has the following options:

The command lines for training models using demo data are:

# training from scratch
# four-taxon 
python ERICAModelTraining.py -i test/four_pop_test_msa.txt -l test/four_pop_test.label -p 4 -o four_pop_test_model -b 8 --Iteration 10

# five-taxon
python ERICAModelTraining.py -i test/five_pop_test_msa.txt -l test/five_pop_test.label -p 5 -o five_pop_test_model -b 8 --Iteration 10

# fine-tuning the pre-trained model 
# four-taxon
python ERICAModelTraining.py -i test/four_pop_test_msa.txt -l test/four_pop_test.label -p 4 -o four_pop_test_ft_model -m TrainedModels/four_taxon_model_319200 -b 8 --Iteration 10

# five-taxon
python ERICAModelTraining.py -i test/five_pop_test_msa.txt -l test/five_pop_test.label -p 5 -o five_pop_test_ft_model -m TrainedModels/five_taxon_model_660600 -b 8 --Iteration 10