YuelangX / Gaussian-Head-Avatar

[CVPR 2024] Official repository for "Gaussian Head Avatar: Ultra High-fidelity Head Avatar via Dynamic Gaussians"
Other
777 stars 49 forks source link

Gaussian Head Avatar: Ultra High-fidelity Head Avatar via Dynamic Gaussians

Paper | Project Page

Requirements

Datasets

We provide instructions for preprocessing NeRSemble dataset:

We provide a mini demo dataset for checking whether the code is runnable. Note, before downloading it, you must first sign the NeRSemble Terms of Use.

Training

First, edit the config file, for example "config/train_meshhead_N031", and train the geometry guidance model.

python train_meshhead.py --config config/train_meshhead_N031.yaml

Second, edit the config file "config/train_gaussianhead_N031", and train the gaussian head avatar.

python train_gaussianhead.py --config config/train_gaussianhead_N031.yaml

Reenactment

Once the two-stage training is completed, the trained avatar can be reenacted by a sequence of expression coefficients. Please specify the avatar checkpoints and the source data in the config file "config/reenactment_N031.py" and run the reenactment application.

python reenactment.py --config config/reenactment_N031.yaml

Acknowledgement

Part of the code is borrowed from gaussian-splatting.

Citation


@inproceedings{xu2023gaussianheadavatar,
  title={Gaussian Head Avatar: Ultra High-fidelity Head Avatar via Dynamic Gaussians},
  author={Xu, Yuelang and Chen, Benwang and Li, Zhe and Zhang, Hongwen and Wang, Lizhen and Zheng, Zerong and Liu, Yebin},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2024}
}